Spaces:
Runtime error
Runtime error
Upload blur_vid.py
Browse files- blur_vid.py +311 -0
blur_vid.py
ADDED
@@ -0,0 +1,311 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
"""
|
3 |
+
**Aim:** This is the final code of video blur along with UI
|
4 |
+
|
5 |
+
**Author:** Shalu Singh
|
6 |
+
|
7 |
+
**Starting Date:** 12/9/23
|
8 |
+
|
9 |
+
**Ending Date:** 14/1/24
|
10 |
+
"""
|
11 |
+
|
12 |
+
# import libraries
|
13 |
+
import tensorflow as tf
|
14 |
+
import numpy as np
|
15 |
+
from PIL import Image
|
16 |
+
import cv2
|
17 |
+
import os
|
18 |
+
import pandas as pd
|
19 |
+
import keras
|
20 |
+
import gradio
|
21 |
+
from concurrent.futures import ThreadPoolExecutor
|
22 |
+
from moviepy.editor import VideoFileClip, concatenate_videoclips
|
23 |
+
|
24 |
+
# path to ouput video
|
25 |
+
out_video_path = 'blured_op_video.mp4'
|
26 |
+
|
27 |
+
# class label
|
28 |
+
coco_classes = {
|
29 |
+
0: 'unlabeled',
|
30 |
+
1: 'person',
|
31 |
+
2: 'bicycle',
|
32 |
+
3: 'car',
|
33 |
+
4: 'motorcycle',
|
34 |
+
5: "airplane",
|
35 |
+
6: "bus",
|
36 |
+
7: "train",
|
37 |
+
8: "truck",
|
38 |
+
9: "boat",
|
39 |
+
10:" traffic light",
|
40 |
+
11: "fire hydrant",
|
41 |
+
12: "street sign",
|
42 |
+
13: "stop |sign",
|
43 |
+
14: "parking meter",
|
44 |
+
15: "bench",
|
45 |
+
16: "bird",
|
46 |
+
17: "cat",
|
47 |
+
18: "dog",
|
48 |
+
19: "horse",
|
49 |
+
20: "sheep",
|
50 |
+
21: "cow",
|
51 |
+
22: "elephant",
|
52 |
+
23:" bear",
|
53 |
+
24: "zebra",
|
54 |
+
25: "giraffe",
|
55 |
+
26: "hat",
|
56 |
+
27: "backpack",
|
57 |
+
28: "umbrella",
|
58 |
+
29: "shoe",
|
59 |
+
30: "eye glasses",
|
60 |
+
31: "handbag",
|
61 |
+
32:" tie",
|
62 |
+
33: "suitcase",
|
63 |
+
34:" frisbee",
|
64 |
+
35: "skis",
|
65 |
+
36: "snowboard",
|
66 |
+
37: "sports ball",
|
67 |
+
38: "kite",
|
68 |
+
39: "baseball bat",
|
69 |
+
40: "baseball glove",
|
70 |
+
41: "skateboard",
|
71 |
+
42: "surfboard",
|
72 |
+
43: "tennis racket",
|
73 |
+
44: "bottle",
|
74 |
+
45: "plate",
|
75 |
+
46: "wine glass",
|
76 |
+
47: "cup",
|
77 |
+
48: "fork",
|
78 |
+
49: "knife",
|
79 |
+
50: "spoon",
|
80 |
+
51: "bowl",
|
81 |
+
52: "banana",
|
82 |
+
53:"apple",
|
83 |
+
54:"sandwich",
|
84 |
+
55:" orange",
|
85 |
+
56: "broccoli",
|
86 |
+
57: "carrot",
|
87 |
+
58: "hot dog",
|
88 |
+
59:' pizza',
|
89 |
+
60: "donut",
|
90 |
+
61: 'cake',
|
91 |
+
62: "chair",
|
92 |
+
63: "couch",
|
93 |
+
64: "potted plant",
|
94 |
+
65: "bed",
|
95 |
+
66: "mirror",
|
96 |
+
67: "dining table",
|
97 |
+
68: "window",
|
98 |
+
69: "desk",
|
99 |
+
70: "toilet",
|
100 |
+
71: "door",
|
101 |
+
72: "tv",
|
102 |
+
73:" laptop",
|
103 |
+
74: "mouse",
|
104 |
+
75: "remote",
|
105 |
+
76:" keyboard",
|
106 |
+
77: "cell phone",
|
107 |
+
78: "microwave",
|
108 |
+
79: "oven",
|
109 |
+
80: "toaster",
|
110 |
+
81: "sink",
|
111 |
+
82: "refrigerator",
|
112 |
+
83: "blender",
|
113 |
+
84: "book",
|
114 |
+
85:"clock",
|
115 |
+
86: "vase",
|
116 |
+
87: "scissors",
|
117 |
+
88: "teddy bear",
|
118 |
+
89: "hair drier",
|
119 |
+
90: "toothbrush",
|
120 |
+
}
|
121 |
+
|
122 |
+
coco_encode = {value:key for key,value in coco_classes.items()}
|
123 |
+
coco_labels = list(coco_classes.values())
|
124 |
+
|
125 |
+
# function: blur the image
|
126 |
+
def blur_image(image = None,coordinates = None,blur_value = 3):
|
127 |
+
#print('*********** INSIDE [blur_image()] *********]')
|
128 |
+
img = image.copy() # copy the image to work on new image
|
129 |
+
if (coordinates is not None):
|
130 |
+
#print('Performing image blur operation...')
|
131 |
+
for coord in (coordinates):
|
132 |
+
ymin,xmin,ymax,xmax = coord
|
133 |
+
#print('Image shape:',img.shape)
|
134 |
+
# Extract region of intrest
|
135 |
+
Y_min,X_min,Y_max,X_max = int(ymin*img.shape[0]),int(xmin*img.shape[1]),int(ymax*img.shape[0]),int(xmax*img.shape[1])
|
136 |
+
#print('Y_min,Y_max',Y_min,Y_max)
|
137 |
+
#print('X_min,X_max',X_min,X_max)
|
138 |
+
roi = img[Y_min:Y_max,X_min:X_max]
|
139 |
+
#show_img(roi,'Original_roi')
|
140 |
+
# blur the extracted img using Gausian blur
|
141 |
+
try:
|
142 |
+
roi = cv2.GaussianBlur(roi,ksize = (blur_value,blur_value),sigmaX = 0)
|
143 |
+
#show_img(roi,title='blured roi')
|
144 |
+
# replace the original roi with blured_roi
|
145 |
+
img[Y_min:Y_max, X_min:X_max] = roi
|
146 |
+
except:
|
147 |
+
pass
|
148 |
+
|
149 |
+
return img
|
150 |
+
|
151 |
+
# function: filter detection boxs
|
152 |
+
def filter_detection(detector_output,select_classes,thr = 0.6):
|
153 |
+
# print('********* INSIDE [filter_detection()] **********')
|
154 |
+
detection_boxs = detector_output['detection_boxes']
|
155 |
+
detection_class = detector_output['detection_classes']
|
156 |
+
detection_scores = detector_output['detection_scores']
|
157 |
+
# get the masking to select classes which user choosed
|
158 |
+
masked_classes = np.isin(detection_class,select_classes)
|
159 |
+
|
160 |
+
# select only selected classes
|
161 |
+
detection_class = detection_class[masked_classes]
|
162 |
+
detection_boxs = detection_boxs[masked_classes]
|
163 |
+
detection_scores = detection_scores[masked_classes]
|
164 |
+
|
165 |
+
# filter the detection boxses based on threshold
|
166 |
+
selected_scores = detection_scores[detection_scores >= thr]
|
167 |
+
selected_class = detection_class[detection_scores >= thr]
|
168 |
+
selected_boxs = detection_boxs[detection_scores >= thr].numpy()
|
169 |
+
|
170 |
+
return selected_boxs,selected_class,selected_scores
|
171 |
+
|
172 |
+
# get the input video
|
173 |
+
# load video from local disk
|
174 |
+
def load_input(ip_path):
|
175 |
+
#print('******* INSIDE [load_input] ********')
|
176 |
+
try:
|
177 |
+
cap = cv2.VideoCapture(ip_path)
|
178 |
+
print('Video loaded successfully!')
|
179 |
+
return cap
|
180 |
+
except:
|
181 |
+
print("Failed! to load video")
|
182 |
+
|
183 |
+
#function: get video property like frame_width,frame_heigh,frame_per_second(fps),codecc
|
184 |
+
def out_video(cap):
|
185 |
+
#print('******** INSIDE [out_video] ***********')
|
186 |
+
frame_width = int(cap.get(3)) # width of the fames in the video
|
187 |
+
frame_height = int(cap.get(4)) # height of the frame in the video
|
188 |
+
fps = int(cap.get(5)) # frame per second
|
189 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
190 |
+
video_duration = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))/ fps
|
191 |
+
codecc = cv2.VideoWriter_fourcc(*'mp4V') # codecc for output video ( h264 codecc)
|
192 |
+
# video property info
|
193 |
+
print('Frame Width:',frame_width)
|
194 |
+
print('Frame height:',frame_height)
|
195 |
+
print('Frame Per Second:',fps)
|
196 |
+
print('Total frames:',total_frames)
|
197 |
+
print('video_duration: {} minutes'.format(round(video_duration/60),2))
|
198 |
+
# VideoWriter object to save blured video
|
199 |
+
out = cv2.VideoWriter(out_video_path,codecc,fps,(frame_width,frame_height))
|
200 |
+
return out,fps,total_frames,video_duration
|
201 |
+
|
202 |
+
# function: to get time range to perfrom blur
|
203 |
+
def time_range(start_time,end_time):
|
204 |
+
#print('*********** INSIDE [time_range()] ************')
|
205 |
+
start_time,end_time = start_time,end_time # change to second(s) format
|
206 |
+
return start_time,end_time
|
207 |
+
|
208 |
+
# function: to check if time range is valid or not
|
209 |
+
def is_valid_time_range(start_time,end_time,video_duration):
|
210 |
+
#print('********** INSIDE [valid_time_range()] *************')
|
211 |
+
return (0 <= start_time < end_time <= video_duration)
|
212 |
+
|
213 |
+
|
214 |
+
# load model
|
215 |
+
|
216 |
+
object_detection_model = hub.load("https://www.kaggle.com/models/tensorflow/efficientdet/frameworks/TensorFlow2/variations/d2/versions/1")
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
def blur_video(input_video_path, u_classes, start_time, end_time):
|
221 |
+
print('STARTING OF PROCESSING...')
|
222 |
+
print("u_classes:",u_classes,type(u_classes))
|
223 |
+
label_encode = np.array([coco_encode[i] for i in u_classes], dtype='float16')
|
224 |
+
print('label_encode:',label_encode,type(label_encode))
|
225 |
+
cap = load_input(ip_path=input_video_path)
|
226 |
+
out, fps, total_frames, video_duration = out_video(cap)
|
227 |
+
start_time, end_time = time_range(start_time, end_time)
|
228 |
+
|
229 |
+
if is_valid_time_range(start_time, end_time, video_duration):
|
230 |
+
start_frame = int(start_time * fps)
|
231 |
+
end_frame = int(end_time * fps)
|
232 |
+
print('Start Frame:', start_frame)
|
233 |
+
print('End Frame:', end_frame)
|
234 |
+
|
235 |
+
with ThreadPoolExecutor(max_workers=4) as executor: # Adjust max_workers as needed
|
236 |
+
futures = []
|
237 |
+
for i in range(total_frames):
|
238 |
+
ret, frame = cap.read()
|
239 |
+
if ret:
|
240 |
+
frame = tf.expand_dims(frame, axis=0)
|
241 |
+
else:
|
242 |
+
break
|
243 |
+
|
244 |
+
if start_frame <= i <= end_frame:
|
245 |
+
print('Blured_frame:',i)
|
246 |
+
future = executor.submit(blur_process, frame, label_encode)
|
247 |
+
futures.append(future)
|
248 |
+
else:
|
249 |
+
out.write(frame[0].numpy())
|
250 |
+
|
251 |
+
for future in futures:
|
252 |
+
blured_img = future.result()
|
253 |
+
out.write(blured_img)
|
254 |
+
|
255 |
+
cap.release()
|
256 |
+
out.release()
|
257 |
+
|
258 |
+
return out_video_path
|
259 |
+
|
260 |
+
def blur_process(frame,l_encoder,blur_value):
|
261 |
+
print('label_encode',l_encoder)
|
262 |
+
frame = np.expand_dims(frame,axis = 0)
|
263 |
+
detector_output = object_detection_model(frame)
|
264 |
+
boxes,classes,scores = filter_detection(detector_output,l_encoder)
|
265 |
+
blured_img = blur_image(frame[0],boxes,blur_value)
|
266 |
+
return blured_img
|
267 |
+
|
268 |
+
|
269 |
+
|
270 |
+
def process_and_concat_video(input_video_path,u_classes,blur_value,start_time, end_time):
|
271 |
+
label_encode = np.array([coco_encode[i] for i in u_classes],dtype = 'float16')
|
272 |
+
# Load the full video clip
|
273 |
+
full_video_clip = VideoFileClip(input_video_path)
|
274 |
+
|
275 |
+
# Process the specified part of the video
|
276 |
+
processed_clip = full_video_clip.subclip(start_time, end_time).set_duration(end_time - start_time)
|
277 |
+
processed_clip = processed_clip.fl_image(lambda frame: blur_process(frame,label_encode,blur_value))
|
278 |
+
print('final clip fps:',full_video_clip.fps)
|
279 |
+
print('processed_clip fps:',processed_clip.fps)
|
280 |
+
|
281 |
+
# Concatenate the processed and unprocessed parts
|
282 |
+
final_clip = concatenate_videoclips([full_video_clip.subclip(0, start_time),
|
283 |
+
processed_clip,
|
284 |
+
full_video_clip.subclip(end_time, None)])
|
285 |
+
|
286 |
+
final_clip.set_fps = 25 # Assuming desired FPS is 25
|
287 |
+
|
288 |
+
|
289 |
+
# Write the final video to an output file with the specified fps
|
290 |
+
out_video_path = "output_video.mp4"
|
291 |
+
final_clip.write_videofile(out_video_path, codec="h264", audio_codec="aac",fps = 25)
|
292 |
+
|
293 |
+
return out_video_path
|
294 |
+
|
295 |
+
|
296 |
+
if __name__ == "__main__":
|
297 |
+
import gradio as gr
|
298 |
+
iface = gr.Interface(
|
299 |
+
fn=process_and_concat_video,
|
300 |
+
inputs=[
|
301 |
+
gr.Video(label="Upload Video"),
|
302 |
+
gr.CheckboxGroup(choices=coco_labels[1:], label="Select Classes"),
|
303 |
+
gr.Slider(label = "blur intensity",minimum = 3,maximum = 90, step = 3),
|
304 |
+
gr.Number(label="Start Time (seconds)"),
|
305 |
+
gr.Number(label="End Time (seconds)"),
|
306 |
+
],
|
307 |
+
outputs= "video",
|
308 |
+
title = 'BlurVista 👓'
|
309 |
+
)
|
310 |
+
iface.launch(debug = True,inline = False)
|
311 |
+
|