Spaces:
Running
Running
Commit
·
9aa07eb
1
Parent(s):
fc2145b
fix: pickle read with wrong func
Browse files- app.py +4 -5
- utilities.py +1 -23
app.py
CHANGED
@@ -28,7 +28,7 @@ import utilities as us
|
|
28 |
# def wrapper(*args, **kwargs):
|
29 |
# return func(*args, **kwargs)
|
30 |
# return wrapper
|
31 |
-
pnp_path =
|
32 |
|
33 |
js_func = """
|
34 |
function refresh() {
|
@@ -50,8 +50,7 @@ df_default = pd.DataFrame({
|
|
50 |
'Age': [25, 30, 35],
|
51 |
'City': ['New York', 'Los Angeles', 'Chicago']
|
52 |
})
|
53 |
-
models_path =
|
54 |
-
#models_path = "./models.csv"
|
55 |
|
56 |
# Variabile globale per tenere traccia dei dati correnti
|
57 |
df_current = df_default.copy()
|
@@ -82,7 +81,7 @@ def load_data(file, path, use_default):
|
|
82 |
input_data["input_method"] = 'uploaded_file'
|
83 |
input_data["db_name"] = os.path.splitext(os.path.basename(file))[0]
|
84 |
#input_data["data_path"] = os.path.join(".", "data", "data_interface",f"{input_data['db_name']}.sqlite")
|
85 |
-
input_data["data_path"] =
|
86 |
input_data["data"] = us.load_data(file, input_data["db_name"])
|
87 |
df_current = input_data["data"]['data_frames'].get('MyTable', df_default) # Carica il DataFrame
|
88 |
if(input_data["data"]['data_frames'] and input_data["data"]["db"] is None): #for csv and xlsx files
|
@@ -130,7 +129,7 @@ def load_data(file, path, use_default):
|
|
130 |
#input_data["data_path"] = os.path.join(".", "data", "spider_databases", "defeault.sqlite")
|
131 |
#input_data["db_name"] = "default"
|
132 |
#input_data["data"]['db'] = SqliteConnector(relative_db_path=input_data["data_path"], db_name=input_data["db_name"])
|
133 |
-
input_data["data"]['data_frames'] = us.
|
134 |
return input_data["data"]['data_frames']
|
135 |
|
136 |
selected_inputs = sum([file is not None, bool(path), use_default])
|
|
|
28 |
# def wrapper(*args, **kwargs):
|
29 |
# return func(*args, **kwargs)
|
30 |
# return wrapper
|
31 |
+
pnp_path = "evaluation_p_np_metrics.csv"
|
32 |
|
33 |
js_func = """
|
34 |
function refresh() {
|
|
|
50 |
'Age': [25, 30, 35],
|
51 |
'City': ['New York', 'Los Angeles', 'Chicago']
|
52 |
})
|
53 |
+
models_path ="models.csv"
|
|
|
54 |
|
55 |
# Variabile globale per tenere traccia dei dati correnti
|
56 |
df_current = df_default.copy()
|
|
|
81 |
input_data["input_method"] = 'uploaded_file'
|
82 |
input_data["db_name"] = os.path.splitext(os.path.basename(file))[0]
|
83 |
#input_data["data_path"] = os.path.join(".", "data", "data_interface",f"{input_data['db_name']}.sqlite")
|
84 |
+
input_data["data_path"] = f"{input_data['db_name']}.sqlite"
|
85 |
input_data["data"] = us.load_data(file, input_data["db_name"])
|
86 |
df_current = input_data["data"]['data_frames'].get('MyTable', df_default) # Carica il DataFrame
|
87 |
if(input_data["data"]['data_frames'] and input_data["data"]["db"] is None): #for csv and xlsx files
|
|
|
129 |
#input_data["data_path"] = os.path.join(".", "data", "spider_databases", "defeault.sqlite")
|
130 |
#input_data["db_name"] = "default"
|
131 |
#input_data["data"]['db'] = SqliteConnector(relative_db_path=input_data["data_path"], db_name=input_data["db_name"])
|
132 |
+
input_data["data"]['data_frames'] = us.load_tables_dict_from_pkl('tables_dict.pkl')
|
133 |
return input_data["data"]['data_frames']
|
134 |
|
135 |
selected_inputs = sum([file is not None, bool(path), use_default])
|
utilities.py
CHANGED
@@ -108,28 +108,6 @@ def generate_some_samples(connector, tbl_name):
|
|
108 |
samples.append(f"Error: {e}")
|
109 |
return samples
|
110 |
|
111 |
-
def
|
112 |
with open(file_path, 'rb') as f:
|
113 |
return pickle.load(f)
|
114 |
-
|
115 |
-
def extract_tables_dict(pnp_path):
|
116 |
-
tables_dict = {}
|
117 |
-
with open(pnp_path, mode='r', encoding='utf-8') as file:
|
118 |
-
reader = csv.DictReader(file)
|
119 |
-
tbl_db_pairs = set() # Use a set to avoid duplicates
|
120 |
-
for row in reader:
|
121 |
-
tbl_name = row.get("tbl_name")
|
122 |
-
db_path = row.get("db_path")
|
123 |
-
if tbl_name and db_path:
|
124 |
-
tbl_db_pairs.add((tbl_name, db_path)) # Add the pair to the set
|
125 |
-
for tbl_name, db_path in list(tbl_db_pairs):
|
126 |
-
if tbl_name and db_path:
|
127 |
-
connector = sqlite3.connect(db_path)
|
128 |
-
query = f"SELECT * FROM {tbl_name} LIMIT 5"
|
129 |
-
try:
|
130 |
-
df = pd.read_sql_query(query, connector)
|
131 |
-
tables_dict[tbl_name] = df
|
132 |
-
except Exception as e:
|
133 |
-
tables_dict[tbl_name] = pd.DataFrame({"Error": [str(e)]}) # DataFrame con messaggio di errore
|
134 |
-
return load_tables_dict('tables_dict.csv')
|
135 |
-
return tables_dict
|
|
|
108 |
samples.append(f"Error: {e}")
|
109 |
return samples
|
110 |
|
111 |
+
def load_tables_dict_from_pkl(file_path):
|
112 |
with open(file_path, 'rb') as f:
|
113 |
return pickle.load(f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|