Spaces:
Runtime error
Runtime error
Simon Duerr
commited on
Commit
·
0605e17
0
Parent(s):
first commit
Browse files- README.md +13 -0
- app.py +660 -0
- packages.txt +1 -0
- requirements.txt +5 -0
- rosettafold_pymol.py +168 -0
README.md
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: RoseTTAfold2
|
| 3 |
+
emoji: 🏢
|
| 4 |
+
colorFrom: indigo
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 3.33.1
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
|
app.py
ADDED
|
@@ -0,0 +1,660 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, time, sys
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
if not os.path.isfile("RF2_apr23.pt"):
|
| 5 |
+
# send param download into background
|
| 6 |
+
os.system(
|
| 7 |
+
"(apt-get install aria2; aria2c -q -x 16 https://colabfold.steineggerlab.workers.dev/RF2_apr23.pt) &"
|
| 8 |
+
)
|
| 9 |
+
|
| 10 |
+
if not os.path.isdir("RoseTTAFold2"):
|
| 11 |
+
print("install RoseTTAFold2")
|
| 12 |
+
os.system("git clone https://github.com/sokrypton/RoseTTAFold2.git")
|
| 13 |
+
os.system(
|
| 14 |
+
"cd RoseTTAFold2/SE3Transformer; pip -q install --no-cache-dir -r requirements.txt; pip -q install ."
|
| 15 |
+
)
|
| 16 |
+
os.system(
|
| 17 |
+
"wget https://raw.githubusercontent.com/sokrypton/ColabFold/beta/colabfold/mmseqs/api.py"
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
# install hhsuite
|
| 21 |
+
print("install hhsuite")
|
| 22 |
+
os.makedirs("hhsuite", exist_ok=True)
|
| 23 |
+
os.system(
|
| 24 |
+
f"curl -fsSL https://github.com/soedinglab/hh-suite/releases/download/v3.3.0/hhsuite-3.3.0-SSE2-Linux.tar.gz | tar xz -C hhsuite/"
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
if os.path.isfile(f"RF2_apr23.pt.aria2"):
|
| 29 |
+
print("downloading RoseTTAFold2 params")
|
| 30 |
+
while os.path.isfile(f"RF2_apr23.pt.aria2"):
|
| 31 |
+
time.sleep(5)
|
| 32 |
+
|
| 33 |
+
os.environ["DGLBACKEND"] = "pytorch"
|
| 34 |
+
sys.path.append("RoseTTAFold2/network")
|
| 35 |
+
if "hhsuite" not in os.environ["PATH"]:
|
| 36 |
+
os.environ["PATH"] += ":hhsuite/bin:hhsuite/scripts"
|
| 37 |
+
|
| 38 |
+
import matplotlib.pyplot as plt
|
| 39 |
+
import numpy as np
|
| 40 |
+
from parsers import parse_a3m
|
| 41 |
+
from api import run_mmseqs2
|
| 42 |
+
import py3Dmol
|
| 43 |
+
import torch
|
| 44 |
+
from string import ascii_uppercase, ascii_lowercase
|
| 45 |
+
import hashlib, re, os
|
| 46 |
+
import random
|
| 47 |
+
|
| 48 |
+
from Bio.PDB import *
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def get_hash(x):
|
| 52 |
+
return hashlib.sha1(x.encode()).hexdigest()
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
alphabet_list = list(ascii_uppercase + ascii_lowercase)
|
| 56 |
+
from collections import OrderedDict, Counter
|
| 57 |
+
|
| 58 |
+
import gradio as gr
|
| 59 |
+
|
| 60 |
+
if not "pred" in dir():
|
| 61 |
+
from predict import Predictor
|
| 62 |
+
|
| 63 |
+
print("compile RoseTTAFold2")
|
| 64 |
+
model_params = "RF2_apr23.pt"
|
| 65 |
+
if torch.cuda.is_available():
|
| 66 |
+
pred = Predictor(model_params, torch.device("cuda:0"))
|
| 67 |
+
else:
|
| 68 |
+
print("WARNING: using CPU")
|
| 69 |
+
pred = Predictor(model_params, torch.device("cpu"))
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def get_unique_sequences(seq_list):
|
| 73 |
+
unique_seqs = list(OrderedDict.fromkeys(seq_list))
|
| 74 |
+
return unique_seqs
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_msa(seq, jobname, cov=50, id=90, max_msa=2048, mode="unpaired_paired"):
|
| 78 |
+
assert mode in ["unpaired", "paired", "unpaired_paired"]
|
| 79 |
+
seqs = [seq] if isinstance(seq, str) else seq
|
| 80 |
+
|
| 81 |
+
# collapse homooligomeric sequences
|
| 82 |
+
counts = Counter(seqs)
|
| 83 |
+
u_seqs = list(counts.keys())
|
| 84 |
+
u_nums = list(counts.values())
|
| 85 |
+
|
| 86 |
+
# expand homooligomeric sequences
|
| 87 |
+
first_seq = "/".join(sum([[x] * n for x, n in zip(u_seqs, u_nums)], []))
|
| 88 |
+
msa = [first_seq]
|
| 89 |
+
|
| 90 |
+
path = os.path.join(jobname, "msa")
|
| 91 |
+
os.makedirs(path, exist_ok=True)
|
| 92 |
+
if mode in ["paired", "unpaired_paired"] and len(u_seqs) > 1:
|
| 93 |
+
print("getting paired MSA")
|
| 94 |
+
out_paired = run_mmseqs2(u_seqs, f"{path}/", use_pairing=True)
|
| 95 |
+
headers, sequences = [], []
|
| 96 |
+
for a3m_lines in out_paired:
|
| 97 |
+
n = -1
|
| 98 |
+
for line in a3m_lines.split("\n"):
|
| 99 |
+
if len(line) > 0:
|
| 100 |
+
if line.startswith(">"):
|
| 101 |
+
n += 1
|
| 102 |
+
if len(headers) < (n + 1):
|
| 103 |
+
headers.append([])
|
| 104 |
+
sequences.append([])
|
| 105 |
+
headers[n].append(line)
|
| 106 |
+
else:
|
| 107 |
+
sequences[n].append(line)
|
| 108 |
+
# filter MSA
|
| 109 |
+
with open(f"{path}/paired_in.a3m", "w") as handle:
|
| 110 |
+
for n, sequence in enumerate(sequences):
|
| 111 |
+
handle.write(f">n{n}\n{''.join(sequence)}\n")
|
| 112 |
+
os.system(
|
| 113 |
+
f"hhfilter -i {path}/paired_in.a3m -id {id} -cov {cov} -o {path}/paired_out.a3m"
|
| 114 |
+
)
|
| 115 |
+
with open(f"{path}/paired_out.a3m", "r") as handle:
|
| 116 |
+
for line in handle:
|
| 117 |
+
if line.startswith(">"):
|
| 118 |
+
n = int(line[2:])
|
| 119 |
+
xs = sequences[n]
|
| 120 |
+
# expand homooligomeric sequences
|
| 121 |
+
xs = ["/".join([x] * num) for x, num in zip(xs, u_nums)]
|
| 122 |
+
msa.append("/".join(xs))
|
| 123 |
+
|
| 124 |
+
if len(msa) < max_msa and (
|
| 125 |
+
mode in ["unpaired", "unpaired_paired"] or len(u_seqs) == 1
|
| 126 |
+
):
|
| 127 |
+
print("getting unpaired MSA")
|
| 128 |
+
out = run_mmseqs2(u_seqs, f"{path}/")
|
| 129 |
+
Ls = [len(seq) for seq in u_seqs]
|
| 130 |
+
sub_idx = []
|
| 131 |
+
sub_msa = []
|
| 132 |
+
sub_msa_num = 0
|
| 133 |
+
for n, a3m_lines in enumerate(out):
|
| 134 |
+
sub_msa.append([])
|
| 135 |
+
with open(f"{path}/in_{n}.a3m", "w") as handle:
|
| 136 |
+
handle.write(a3m_lines)
|
| 137 |
+
# filter
|
| 138 |
+
os.system(
|
| 139 |
+
f"hhfilter -i {path}/in_{n}.a3m -id {id} -cov {cov} -o {path}/out_{n}.a3m"
|
| 140 |
+
)
|
| 141 |
+
with open(f"{path}/out_{n}.a3m", "r") as handle:
|
| 142 |
+
for line in handle:
|
| 143 |
+
if not line.startswith(">"):
|
| 144 |
+
xs = ["-" * l for l in Ls]
|
| 145 |
+
xs[n] = line.rstrip()
|
| 146 |
+
# expand homooligomeric sequences
|
| 147 |
+
xs = ["/".join([x] * num) for x, num in zip(xs, u_nums)]
|
| 148 |
+
sub_msa[-1].append("/".join(xs))
|
| 149 |
+
sub_msa_num += 1
|
| 150 |
+
sub_idx.append(list(range(len(sub_msa[-1]))))
|
| 151 |
+
|
| 152 |
+
while len(msa) < max_msa and sub_msa_num > 0:
|
| 153 |
+
for n in range(len(sub_idx)):
|
| 154 |
+
if len(sub_idx[n]) > 0:
|
| 155 |
+
msa.append(sub_msa[n][sub_idx[n].pop(0)])
|
| 156 |
+
sub_msa_num -= 1
|
| 157 |
+
if len(msa) == max_msa:
|
| 158 |
+
break
|
| 159 |
+
|
| 160 |
+
with open(f"{jobname}/msa.a3m", "w") as handle:
|
| 161 |
+
for n, sequence in enumerate(msa):
|
| 162 |
+
handle.write(f">n{n}\n{sequence}\n")
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
from Bio.PDB.PDBExceptions import PDBConstructionWarning
|
| 166 |
+
import warnings
|
| 167 |
+
from Bio.PDB import *
|
| 168 |
+
import numpy as np
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
def add_plddt_to_cif(best_plddts, best_plddt, best_seed, jobname):
|
| 172 |
+
pdb_parser = PDBParser()
|
| 173 |
+
warnings.filterwarnings("ignore", category=PDBConstructionWarning)
|
| 174 |
+
structure = pdb_parser.get_structure(
|
| 175 |
+
"pdb", f"{jobname}/rf2_seed{best_seed}_00_pred.pdb"
|
| 176 |
+
)
|
| 177 |
+
io = MMCIFIO()
|
| 178 |
+
io.set_structure(structure)
|
| 179 |
+
io.save(f"{jobname}/rf2_seed{best_seed}_00_pred.cif")
|
| 180 |
+
plddt_cif = f"""#
|
| 181 |
+
loop_
|
| 182 |
+
_ma_qa_metric.id
|
| 183 |
+
_ma_qa_metric.mode
|
| 184 |
+
_ma_qa_metric.name
|
| 185 |
+
_ma_qa_metric.software_group_id
|
| 186 |
+
_ma_qa_metric.type
|
| 187 |
+
1 global pLDDT 1 pLDDT
|
| 188 |
+
2 local pLDDT 1 pLDDT
|
| 189 |
+
#
|
| 190 |
+
_ma_qa_metric_global.metric_id 1
|
| 191 |
+
_ma_qa_metric_global.metric_value {best_plddt:.3f}
|
| 192 |
+
_ma_qa_metric_global.model_id 1
|
| 193 |
+
_ma_qa_metric_global.ordinal_id 1
|
| 194 |
+
#
|
| 195 |
+
loop_
|
| 196 |
+
_ma_qa_metric_local.label_asym_id
|
| 197 |
+
_ma_qa_metric_local.label_comp_id
|
| 198 |
+
_ma_qa_metric_local.label_seq_id
|
| 199 |
+
_ma_qa_metric_local.metric_id
|
| 200 |
+
_ma_qa_metric_local.metric_value
|
| 201 |
+
_ma_qa_metric_local.model_id
|
| 202 |
+
_ma_qa_metric_local.ordinal_id"""
|
| 203 |
+
|
| 204 |
+
for chain in structure[0]:
|
| 205 |
+
for i, residue in enumerate(chain):
|
| 206 |
+
plddt_cif += f"\n{chain.id} {residue.resname} {residue.id[1]} 2 {best_plddts[i]*100:.2f} 1 {residue.id[1]}"
|
| 207 |
+
plddt_cif += "\n#"
|
| 208 |
+
with open(f"{jobname}/rf2_seed{best_seed}_00_pred.cif", "a") as f:
|
| 209 |
+
f.write(plddt_cif)
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
def predict(
|
| 213 |
+
sequence,
|
| 214 |
+
jobname,
|
| 215 |
+
sym,
|
| 216 |
+
order,
|
| 217 |
+
msa_concat_mode,
|
| 218 |
+
msa_method,
|
| 219 |
+
pair_mode,
|
| 220 |
+
collapse_identical,
|
| 221 |
+
num_recycles,
|
| 222 |
+
use_mlm,
|
| 223 |
+
use_dropout,
|
| 224 |
+
max_msa,
|
| 225 |
+
random_seed,
|
| 226 |
+
num_models,
|
| 227 |
+
mode="web",
|
| 228 |
+
):
|
| 229 |
+
if not os.path.exists("/home/user/app"): # crude check if on spaces
|
| 230 |
+
if len(sequence) > 600:
|
| 231 |
+
raise gr.Error(
|
| 232 |
+
f"Your sequence is too long ({len(sequence)}). "
|
| 233 |
+
"Please use the full version of RoseTTAfold2 directly from GitHub."
|
| 234 |
+
)
|
| 235 |
+
random_seed = int(random_seed)
|
| 236 |
+
num_models = int(num_models)
|
| 237 |
+
max_msa = int(max_msa)
|
| 238 |
+
num_recycles = int(num_recycles)
|
| 239 |
+
order = int(order)
|
| 240 |
+
|
| 241 |
+
max_extra_msa = max_msa * 8
|
| 242 |
+
sequence = re.sub("[^A-Z:]", "", sequence.replace("/", ":").upper())
|
| 243 |
+
sequence = re.sub(":+", ":", sequence)
|
| 244 |
+
sequence = re.sub("^[:]+", "", sequence)
|
| 245 |
+
sequence = re.sub("[:]+$", "", sequence)
|
| 246 |
+
|
| 247 |
+
if sym in ["X", "C"]:
|
| 248 |
+
copies = int(order)
|
| 249 |
+
elif sym in ["D"]:
|
| 250 |
+
copies = int(order) * 2
|
| 251 |
+
else:
|
| 252 |
+
copies = {"T": 12, "O": 24, "I": 60}[sym]
|
| 253 |
+
order = ""
|
| 254 |
+
symm = sym + str(order)
|
| 255 |
+
|
| 256 |
+
sequences = sequence.replace(":", "/").split("/")
|
| 257 |
+
if collapse_identical:
|
| 258 |
+
u_sequences = get_unique_sequences(sequences)
|
| 259 |
+
else:
|
| 260 |
+
u_sequences = sequences
|
| 261 |
+
sequences = sum([u_sequences] * copies, [])
|
| 262 |
+
lengths = [len(s) for s in sequences]
|
| 263 |
+
|
| 264 |
+
# TODO
|
| 265 |
+
subcrop = 1000 if sum(lengths) > 1400 else -1
|
| 266 |
+
|
| 267 |
+
sequence = "/".join(sequences)
|
| 268 |
+
jobname = jobname + "_" + symm + "_" + get_hash(sequence)[:5]
|
| 269 |
+
|
| 270 |
+
print(f"jobname: {jobname}")
|
| 271 |
+
print(f"lengths: {lengths}")
|
| 272 |
+
|
| 273 |
+
os.makedirs(jobname, exist_ok=True)
|
| 274 |
+
if msa_method == "mmseqs2":
|
| 275 |
+
get_msa(u_sequences, jobname, mode=pair_mode, max_msa=max_extra_msa)
|
| 276 |
+
|
| 277 |
+
elif msa_method == "single_sequence":
|
| 278 |
+
u_sequence = "/".join(u_sequences)
|
| 279 |
+
with open(f"{jobname}/msa.a3m", "w") as a3m:
|
| 280 |
+
a3m.write(f">{jobname}\n{u_sequence}\n")
|
| 281 |
+
|
| 282 |
+
elif msa_method == "custom_a3m":
|
| 283 |
+
print("upload custom a3m")
|
| 284 |
+
# msa_dict = files.upload()
|
| 285 |
+
lines = msa_dict[list(msa_dict.keys())[0]].decode().splitlines()
|
| 286 |
+
a3m_lines = []
|
| 287 |
+
for line in lines:
|
| 288 |
+
line = line.replace("\x00", "")
|
| 289 |
+
if len(line) > 0 and not line.startswith("#"):
|
| 290 |
+
a3m_lines.append(line)
|
| 291 |
+
|
| 292 |
+
with open(f"{jobname}/msa.a3m", "w") as a3m:
|
| 293 |
+
a3m.write("\n".join(a3m_lines))
|
| 294 |
+
|
| 295 |
+
best_plddt = None
|
| 296 |
+
best_seed = None
|
| 297 |
+
for seed in range(int(random_seed), int(random_seed) + int(num_models)):
|
| 298 |
+
torch.manual_seed(seed)
|
| 299 |
+
random.seed(seed)
|
| 300 |
+
np.random.seed(seed)
|
| 301 |
+
npz = f"{jobname}/rf2_seed{seed}_00.npz"
|
| 302 |
+
pred.predict(
|
| 303 |
+
inputs=[f"{jobname}/msa.a3m"],
|
| 304 |
+
out_prefix=f"{jobname}/rf2_seed{seed}",
|
| 305 |
+
symm=symm,
|
| 306 |
+
ffdb=None, # TODO (templates),
|
| 307 |
+
n_recycles=num_recycles,
|
| 308 |
+
msa_mask=0.15 if use_mlm else 0.0,
|
| 309 |
+
msa_concat_mode=msa_concat_mode,
|
| 310 |
+
nseqs=max_msa,
|
| 311 |
+
nseqs_full=max_extra_msa,
|
| 312 |
+
subcrop=subcrop,
|
| 313 |
+
is_training=use_dropout,
|
| 314 |
+
)
|
| 315 |
+
plddt = np.load(npz)["lddt"].mean()
|
| 316 |
+
if best_plddt is None or plddt > best_plddt:
|
| 317 |
+
best_plddt = plddt
|
| 318 |
+
best_plddts = np.load(npz)["lddt"]
|
| 319 |
+
best_seed = seed
|
| 320 |
+
|
| 321 |
+
if mode == "web":
|
| 322 |
+
# Mol* only displays AlphaFold plDDT if they are in a cif.
|
| 323 |
+
pdb_parser = PDBParser()
|
| 324 |
+
mmcif_parser = MMCIFParser()
|
| 325 |
+
|
| 326 |
+
plddt_cif = add_plddt_to_cif(best_plddts, best_plddt, best_seed, jobname)
|
| 327 |
+
|
| 328 |
+
return f"{jobname}/rf2_seed{best_seed}_00_pred.cif"
|
| 329 |
+
else:
|
| 330 |
+
# for api just return a pdb file
|
| 331 |
+
return f"{jobname}/rf2_seed{best_seed}_00_pred.pdb"
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
def predict_api(
|
| 335 |
+
sequence,
|
| 336 |
+
jobname,
|
| 337 |
+
sym,
|
| 338 |
+
order,
|
| 339 |
+
msa_concat_mode,
|
| 340 |
+
msa_method,
|
| 341 |
+
pair_mode,
|
| 342 |
+
collapse_identical,
|
| 343 |
+
num_recycles,
|
| 344 |
+
use_mlm,
|
| 345 |
+
use_dropout,
|
| 346 |
+
max_msa,
|
| 347 |
+
random_seed,
|
| 348 |
+
num_models,
|
| 349 |
+
):
|
| 350 |
+
filename = predict(
|
| 351 |
+
sequence,
|
| 352 |
+
jobname,
|
| 353 |
+
sym,
|
| 354 |
+
order,
|
| 355 |
+
msa_concat_mode,
|
| 356 |
+
msa_method,
|
| 357 |
+
pair_mode,
|
| 358 |
+
collapse_identical,
|
| 359 |
+
num_recycles,
|
| 360 |
+
use_mlm,
|
| 361 |
+
use_dropout,
|
| 362 |
+
max_msa,
|
| 363 |
+
random_seed,
|
| 364 |
+
num_models,
|
| 365 |
+
mode="api",
|
| 366 |
+
)
|
| 367 |
+
with open(f"{filename}") as fp:
|
| 368 |
+
return fp.read()
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
def molecule(input_pdb, public_link):
|
| 372 |
+
print(input_pdb)
|
| 373 |
+
print(public_link + "/file=" + input_pdb)
|
| 374 |
+
link = public_link + "/file=" + input_pdb
|
| 375 |
+
x = (
|
| 376 |
+
"""<!DOCTYPE html>
|
| 377 |
+
<html lang="en">
|
| 378 |
+
<head>
|
| 379 |
+
<meta charset="utf-8" />
|
| 380 |
+
<meta name="viewport" content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-scale=1.0">
|
| 381 |
+
<title>PDBe Molstar - Helper functions</title>
|
| 382 |
+
<!-- Molstar CSS & JS -->
|
| 383 |
+
<link rel="stylesheet" type="text/css" href="https://www.ebi.ac.uk/pdbe/pdb-component-library/css/pdbe-molstar-light-3.1.0.css">
|
| 384 |
+
<script type="text/javascript" src="https://www.ebi.ac.uk/pdbe/pdb-component-library/js/pdbe-molstar-plugin-3.1.0.js"></script>
|
| 385 |
+
<style>
|
| 386 |
+
* {
|
| 387 |
+
margin: 0;
|
| 388 |
+
padding: 0;
|
| 389 |
+
box-sizing: border-box;
|
| 390 |
+
}
|
| 391 |
+
.msp-plugin ::-webkit-scrollbar-thumb {
|
| 392 |
+
background-color: #474748 !important;
|
| 393 |
+
}
|
| 394 |
+
.viewerSection {
|
| 395 |
+
margin: 120px 0 0 0px;
|
| 396 |
+
}
|
| 397 |
+
#myViewer{
|
| 398 |
+
float:left;
|
| 399 |
+
width:100%;
|
| 400 |
+
height: 800px;
|
| 401 |
+
position:relative;
|
| 402 |
+
}
|
| 403 |
+
.btn{
|
| 404 |
+
|
| 405 |
+
font-family: "Open Sans", sans-serif;
|
| 406 |
+
display: inline-block;
|
| 407 |
+
outline: none;
|
| 408 |
+
cursor: pointer;
|
| 409 |
+
font-weight: 600;
|
| 410 |
+
border-radius: 3px;
|
| 411 |
+
padding: 12px 24px;
|
| 412 |
+
border: 0;
|
| 413 |
+
margin:0 10px;
|
| 414 |
+
line-height: 1.15;
|
| 415 |
+
font-size: 16px;
|
| 416 |
+
text-decoration: none;
|
| 417 |
+
}
|
| 418 |
+
.btn-orange{
|
| 419 |
+
background: #ff5000;
|
| 420 |
+
color: #fff;
|
| 421 |
+
|
| 422 |
+
}
|
| 423 |
+
.btn-gray{
|
| 424 |
+
color: #3a4149;
|
| 425 |
+
background: #e7ebee;
|
| 426 |
+
|
| 427 |
+
}
|
| 428 |
+
.btn:hover{
|
| 429 |
+
transition: all .1s ease;
|
| 430 |
+
box-shadow: 0 0 0 0 #fff, 0 0 0 3px #ddd;}
|
| 431 |
+
.text-center{
|
| 432 |
+
display: flex;
|
| 433 |
+
align-items: center;
|
| 434 |
+
justify-content: center;
|
| 435 |
+
padding: 20px 0;
|
| 436 |
+
}
|
| 437 |
+
.flex{
|
| 438 |
+
padding: 10px;
|
| 439 |
+
display: flex;
|
| 440 |
+
align-items: center;
|
| 441 |
+
justify-content: center;
|
| 442 |
+
width:fit-content;
|
| 443 |
+
}
|
| 444 |
+
.flex svg{
|
| 445 |
+
margin-right: 10px;
|
| 446 |
+
width:16px;
|
| 447 |
+
height:16px;
|
| 448 |
+
}
|
| 449 |
+
.flex a{
|
| 450 |
+
margin:0 10px;
|
| 451 |
+
}
|
| 452 |
+
|
| 453 |
+
</style>
|
| 454 |
+
</head>
|
| 455 |
+
<body>
|
| 456 |
+
<div class="text-center">
|
| 457 |
+
<a class="btn btn-orange flex" href=\""""
|
| 458 |
+
+ link
|
| 459 |
+
+ """\" target="_blank"> <svg fill="none" stroke="currentColor" stroke-width="1.5" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg" aria-hidden="true">
|
| 460 |
+
<path stroke-linecap="round" stroke-linejoin="round" d="M19.5 13.5L12 21m0 0l-7.5-7.5M12 21V3"></path>
|
| 461 |
+
</svg> <span>CIF File</span></a>
|
| 462 |
+
<a class="btn btn-gray flex" href=\""""
|
| 463 |
+
+ link.replace(".cif", ".pdb")
|
| 464 |
+
+ """\" target="_blank"> <svg fill="none" stroke="currentColor" stroke-width="1.5" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg" aria-hidden="true">
|
| 465 |
+
<path stroke-linecap="round" stroke-linejoin="round" d="M19.5 13.5L12 21m0 0l-7.5-7.5M12 21V3"></path>
|
| 466 |
+
</svg> <span>PDB File</span></a>
|
| 467 |
+
|
| 468 |
+
</div>
|
| 469 |
+
<div class="viewerSection">
|
| 470 |
+
<!-- Molstar container -->
|
| 471 |
+
<div id="myViewer"></div>
|
| 472 |
+
|
| 473 |
+
</div>
|
| 474 |
+
<script>
|
| 475 |
+
//Create plugin instance
|
| 476 |
+
var viewerInstance = new PDBeMolstarPlugin();
|
| 477 |
+
|
| 478 |
+
//Set options (Checkout available options list in the documentation)
|
| 479 |
+
var options = {
|
| 480 |
+
customData: {
|
| 481 |
+
url: \""""
|
| 482 |
+
+ link
|
| 483 |
+
+ """\",
|
| 484 |
+
format: "cif"
|
| 485 |
+
},
|
| 486 |
+
alphafoldView: true,
|
| 487 |
+
bgColor: {r:255, g:255, b:255},
|
| 488 |
+
//hideCanvasControls: ["selection", "animation", "controlToggle", "controlInfo"]
|
| 489 |
+
}
|
| 490 |
+
|
| 491 |
+
//Get element from HTML/Template to place the viewer
|
| 492 |
+
var viewerContainer = document.getElementById("myViewer");
|
| 493 |
+
|
| 494 |
+
//Call render method to display the 3D view
|
| 495 |
+
viewerInstance.render(viewerContainer, options);
|
| 496 |
+
|
| 497 |
+
</script>
|
| 498 |
+
</body>
|
| 499 |
+
</html>"""
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
return f"""<iframe style="width: 100%; height: 1000px" name="result" allow="midi; geolocation; microphone; camera;
|
| 503 |
+
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
|
| 504 |
+
allow-scripts allow-same-origin allow-popups
|
| 505 |
+
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
| 506 |
+
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
|
| 507 |
+
|
| 508 |
+
|
| 509 |
+
def predict_web(
|
| 510 |
+
sequence,
|
| 511 |
+
jobname,
|
| 512 |
+
sym,
|
| 513 |
+
order,
|
| 514 |
+
msa_concat_mode,
|
| 515 |
+
msa_method,
|
| 516 |
+
pair_mode,
|
| 517 |
+
collapse_identical,
|
| 518 |
+
num_recycles,
|
| 519 |
+
use_mlm,
|
| 520 |
+
use_dropout,
|
| 521 |
+
max_msa,
|
| 522 |
+
random_seed,
|
| 523 |
+
num_models,
|
| 524 |
+
):
|
| 525 |
+
if os.path.exists("/home/user/app"):
|
| 526 |
+
public_link = "https://simonduerr-rosettafold2.hf.space/"
|
| 527 |
+
else:
|
| 528 |
+
public_link = "http://localhost:7860"
|
| 529 |
+
|
| 530 |
+
filename = predict(
|
| 531 |
+
sequence,
|
| 532 |
+
jobname,
|
| 533 |
+
sym,
|
| 534 |
+
order,
|
| 535 |
+
msa_concat_mode,
|
| 536 |
+
msa_method,
|
| 537 |
+
pair_mode,
|
| 538 |
+
collapse_identical,
|
| 539 |
+
num_recycles,
|
| 540 |
+
use_mlm,
|
| 541 |
+
use_dropout,
|
| 542 |
+
max_msa,
|
| 543 |
+
random_seed,
|
| 544 |
+
num_models,
|
| 545 |
+
mode="web",
|
| 546 |
+
)
|
| 547 |
+
|
| 548 |
+
return molecule(filename, public_link)
|
| 549 |
+
|
| 550 |
+
|
| 551 |
+
with gr.Blocks() as rosettafold:
|
| 552 |
+
gr.Markdown("# RoseTTAFold2")
|
| 553 |
+
gr.Markdown(
|
| 554 |
+
"""If using please cite: [manuscript](https://www.biorxiv.org/content/10.1101/2023.05.24.542179v1)
|
| 555 |
+
<br> Heavily based on [RoseTTAFold2 ColabFold notebook](https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/RoseTTAFold2.ipynb)"""
|
| 556 |
+
)
|
| 557 |
+
with gr.Accordion("How to use in PyMol", open=False):
|
| 558 |
+
gr.Markdown(
|
| 559 |
+
"""```os.system('wget https://huggingface.co/spaces/simonduerr/rosettafold2/raw/main/rosettafold_pymol.py')
|
| 560 |
+
run rosettafold_pymol.py
|
| 561 |
+
rosettafold2 sequence, jobname, [sym, order, msa_concat_mode, msa_method, pair_mode, collapse_identical, num_recycles, use_mlm, use_dropout, max_msa, random_seed, num_models]
|
| 562 |
+
color_plddt jobname ```
|
| 563 |
+
"""
|
| 564 |
+
)
|
| 565 |
+
sequence = gr.Textbox(
|
| 566 |
+
label="sequence",
|
| 567 |
+
value="PIAQIHILEGRSDEQKETLIREVSEAISRSLDAPLTSVRVIITEMAKGHFGIGGELASK",
|
| 568 |
+
)
|
| 569 |
+
jobname = gr.Textbox(label="jobname", value="test")
|
| 570 |
+
|
| 571 |
+
with gr.Accordion("Additional settings", open=False):
|
| 572 |
+
sym = gr.Textbox(label="sym", value="X")
|
| 573 |
+
order = gr.Slider(label="order", value=1, step=1, minimum=1, maximum=12)
|
| 574 |
+
msa_concat_mode = gr.Dropdown(
|
| 575 |
+
label="msa_concat_mode",
|
| 576 |
+
value="default",
|
| 577 |
+
choices=["diag", "repeat", "default"],
|
| 578 |
+
)
|
| 579 |
+
|
| 580 |
+
msa_method = gr.Dropdown(
|
| 581 |
+
label="msa_method",
|
| 582 |
+
value="single_sequence",
|
| 583 |
+
choices=[
|
| 584 |
+
"mmseqs2",
|
| 585 |
+
"single_sequence",
|
| 586 |
+
], # dont allow custom a3m for now , "custom_a3m"
|
| 587 |
+
)
|
| 588 |
+
pair_mode = gr.Dropdown(
|
| 589 |
+
label="pair_mode",
|
| 590 |
+
value="unpaired_paired",
|
| 591 |
+
choices=["unpaired_paired", "paired", "unpaired"],
|
| 592 |
+
)
|
| 593 |
+
|
| 594 |
+
num_recycles = gr.Dropdown(
|
| 595 |
+
label="num_recycles", value="6", choices=["0", "1", "3", "6", "12", "24"]
|
| 596 |
+
)
|
| 597 |
+
|
| 598 |
+
use_mlm = gr.Checkbox(label="use_mlm", value=False)
|
| 599 |
+
use_dropout = gr.Checkbox(label="use_dropout", value=False)
|
| 600 |
+
collapse_identical = gr.Checkbox(label="collapse_identical", value=False)
|
| 601 |
+
max_msa = gr.Dropdown(
|
| 602 |
+
choices=["16", "32", "64", "128", "256", "512"],
|
| 603 |
+
value="16",
|
| 604 |
+
label="max_msa",
|
| 605 |
+
)
|
| 606 |
+
random_seed = gr.Textbox(label="random_seed", value=0)
|
| 607 |
+
num_models = gr.Dropdown(
|
| 608 |
+
label="num_models", value="1", choices=["1", "2", "4", "8", "16", "32"]
|
| 609 |
+
)
|
| 610 |
+
|
| 611 |
+
btn = gr.Button("Run", visible=False)
|
| 612 |
+
btn_web = gr.Button("Run")
|
| 613 |
+
|
| 614 |
+
output_plain = gr.HTML()
|
| 615 |
+
output = gr.HTML()
|
| 616 |
+
|
| 617 |
+
btn.click(
|
| 618 |
+
fn=predict_api,
|
| 619 |
+
inputs=[
|
| 620 |
+
sequence,
|
| 621 |
+
jobname,
|
| 622 |
+
sym,
|
| 623 |
+
order,
|
| 624 |
+
msa_concat_mode,
|
| 625 |
+
msa_method,
|
| 626 |
+
pair_mode,
|
| 627 |
+
collapse_identical,
|
| 628 |
+
num_recycles,
|
| 629 |
+
use_mlm,
|
| 630 |
+
use_dropout,
|
| 631 |
+
max_msa,
|
| 632 |
+
random_seed,
|
| 633 |
+
num_models,
|
| 634 |
+
],
|
| 635 |
+
outputs=output_plain,
|
| 636 |
+
api_name="rosettafold2",
|
| 637 |
+
)
|
| 638 |
+
btn_web.click(
|
| 639 |
+
fn=predict_web,
|
| 640 |
+
inputs=[
|
| 641 |
+
sequence,
|
| 642 |
+
jobname,
|
| 643 |
+
sym,
|
| 644 |
+
order,
|
| 645 |
+
msa_concat_mode,
|
| 646 |
+
msa_method,
|
| 647 |
+
pair_mode,
|
| 648 |
+
collapse_identical,
|
| 649 |
+
num_recycles,
|
| 650 |
+
use_mlm,
|
| 651 |
+
use_dropout,
|
| 652 |
+
max_msa,
|
| 653 |
+
random_seed,
|
| 654 |
+
num_models,
|
| 655 |
+
],
|
| 656 |
+
outputs=output,
|
| 657 |
+
)
|
| 658 |
+
|
| 659 |
+
|
| 660 |
+
rosettafold.launch(share=True, debug=True)
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
aria2
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
dgl==1.0.2+cu116
|
| 2 |
+
matplotlib
|
| 3 |
+
numpy
|
| 4 |
+
torch
|
| 5 |
+
-f https://data.dgl.ai/wheels/cu116/repo.html
|
rosettafold_pymol.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pymol import cmd
|
| 2 |
+
import requests
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
# from gradio_client import Client
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def color_plddt(selection="all"):
|
| 9 |
+
"""
|
| 10 |
+
AUTHOR
|
| 11 |
+
Jinyuan Sun
|
| 12 |
+
https://github.com/JinyuanSun/PymolFold/tree/main
|
| 13 |
+
MIT License
|
| 14 |
+
|
| 15 |
+
DESCRIPTION
|
| 16 |
+
Colors Predicted Structures by pLDDT
|
| 17 |
+
|
| 18 |
+
USAGE
|
| 19 |
+
color_plddt sele
|
| 20 |
+
|
| 21 |
+
PARAMETERS
|
| 22 |
+
|
| 23 |
+
sele (string)
|
| 24 |
+
The name of the selection/object to color by pLDDT. Default: all
|
| 25 |
+
"""
|
| 26 |
+
# Alphafold color scheme for plddt
|
| 27 |
+
cmd.set_color("high_lddt_c", [0, 0.325490196078431, 0.843137254901961])
|
| 28 |
+
cmd.set_color(
|
| 29 |
+
"normal_lddt_c", [0.341176470588235, 0.792156862745098, 0.976470588235294]
|
| 30 |
+
)
|
| 31 |
+
cmd.set_color("medium_lddt_c", [1, 0.858823529411765, 0.070588235294118])
|
| 32 |
+
cmd.set_color("low_lddt_c", [1, 0.494117647058824, 0.270588235294118])
|
| 33 |
+
|
| 34 |
+
# test the scale of predicted_lddt (0~1 or 0~100 ) as b-factors
|
| 35 |
+
cmd.select("test_b_scale", f"b>1 and ({selection})")
|
| 36 |
+
b_scale = cmd.count_atoms("test_b_scale")
|
| 37 |
+
|
| 38 |
+
if b_scale > 0:
|
| 39 |
+
cmd.select("high_lddt", f"({selection}) and (b >90 or b =90)")
|
| 40 |
+
cmd.select("normal_lddt", f"({selection}) and ((b <90 and b >70) or (b =70))")
|
| 41 |
+
cmd.select("medium_lddt", f"({selection}) and ((b <70 and b >50) or (b=50))")
|
| 42 |
+
cmd.select("low_lddt", f"({selection}) and ((b <50 and b >0 ) or (b=0))")
|
| 43 |
+
else:
|
| 44 |
+
cmd.select("high_lddt", f"({selection}) and (b >.90 or b =.90)")
|
| 45 |
+
cmd.select(
|
| 46 |
+
"normal_lddt", f"({selection}) and ((b <.90 and b >.70) or (b =.70))"
|
| 47 |
+
)
|
| 48 |
+
cmd.select("medium_lddt", f"({selection}) and ((b <.70 and b >.50) or (b=.50))")
|
| 49 |
+
cmd.select("low_lddt", f"({selection}) and ((b <.50 and b >0 ) or (b=0))")
|
| 50 |
+
|
| 51 |
+
cmd.delete("test_b_scale")
|
| 52 |
+
|
| 53 |
+
# set color based on plddt values
|
| 54 |
+
cmd.color("high_lddt_c", "high_lddt")
|
| 55 |
+
cmd.color("normal_lddt_c", "normal_lddt")
|
| 56 |
+
cmd.color("medium_lddt_c", "medium_lddt")
|
| 57 |
+
cmd.color("low_lddt_c", "low_lddt")
|
| 58 |
+
|
| 59 |
+
# set background color
|
| 60 |
+
cmd.bg_color("white")
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def query_rosettafold2(
|
| 64 |
+
sequence: str,
|
| 65 |
+
jobname: str,
|
| 66 |
+
sym: str = "X",
|
| 67 |
+
order: int = 1,
|
| 68 |
+
msa_concat_mode: str = "diag",
|
| 69 |
+
msa_method: str = "single_sequence",
|
| 70 |
+
pair_mode: str = "unpaired_paired",
|
| 71 |
+
collapse_identical: bool = True,
|
| 72 |
+
num_recycles: int = 0,
|
| 73 |
+
use_mlm: bool = True,
|
| 74 |
+
use_dropout: bool = True,
|
| 75 |
+
max_msa: int = 16,
|
| 76 |
+
random_seed: int = 0,
|
| 77 |
+
num_models: int = 0,
|
| 78 |
+
):
|
| 79 |
+
"""
|
| 80 |
+
AUTHOR
|
| 81 |
+
Simon Duerr
|
| 82 |
+
https://twitter.com/simonduerr
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
DESCRIPTION
|
| 86 |
+
Predict a structure using rosettafold2
|
| 87 |
+
|
| 88 |
+
USAGE
|
| 89 |
+
rosettafold2 sequence, jobname, [sym, order, msa_concat_mode, msa_method, pair_mode, collapse_identical, num_recycles, use_mlm, use_dropout, max_msa, random_seed, num_models]
|
| 90 |
+
|
| 91 |
+
PARAMETERS
|
| 92 |
+
|
| 93 |
+
sequence: (string)
|
| 94 |
+
one letter amino acid codes that you want to predict
|
| 95 |
+
|
| 96 |
+
jobname: string
|
| 97 |
+
name of the pdbfile that will be outputted
|
| 98 |
+
|
| 99 |
+
sym: string
|
| 100 |
+
symmetry Default: X
|
| 101 |
+
|
| 102 |
+
order:
|
| 103 |
+
Default 1,
|
| 104 |
+
|
| 105 |
+
msa_concat_mode:
|
| 106 |
+
MSA concatenation mode Default:"diag" Options: "diag", "repeat", "default"
|
| 107 |
+
|
| 108 |
+
msa_method:
|
| 109 |
+
MSA method Default:"single_sequence" Options: "mmseqs2", "single_sequence"
|
| 110 |
+
|
| 111 |
+
pair_mode:
|
| 112 |
+
Pair mode Default:"unpaired_paired" Options: "unpaired_paired", "paired", "unpaired"
|
| 113 |
+
|
| 114 |
+
collapse_identical:
|
| 115 |
+
Collapse identical sequences Default:True
|
| 116 |
+
|
| 117 |
+
num_recycles:
|
| 118 |
+
Number of recycles Default:0 Options: 0, 1, 3, 6, 12, 24
|
| 119 |
+
|
| 120 |
+
use_mlm:
|
| 121 |
+
Use MLM Default:True
|
| 122 |
+
|
| 123 |
+
use_dropout:
|
| 124 |
+
Use dropout Default:True
|
| 125 |
+
|
| 126 |
+
max_msa:
|
| 127 |
+
Max MSA Default:16
|
| 128 |
+
|
| 129 |
+
random_seed:
|
| 130 |
+
Random seed Default:0
|
| 131 |
+
|
| 132 |
+
num_models:
|
| 133 |
+
Number of models Default:0
|
| 134 |
+
"""
|
| 135 |
+
response = requests.post(
|
| 136 |
+
"http://localhost:7860/run/rosettafold2/",
|
| 137 |
+
json={
|
| 138 |
+
"data": [
|
| 139 |
+
sequence, # str in 'sequence' Textbox component
|
| 140 |
+
jobname, # str in 'jobname' Textbox component
|
| 141 |
+
sym, # str in 'sym' Textbox component
|
| 142 |
+
order, # int | float (numeric value between 1 and 12) in 'order' Slider component
|
| 143 |
+
"diag", # str (Option from: ['diag', 'repeat', 'default']) in 'msa_concat_mode' Dropdown component
|
| 144 |
+
"single_sequence", # str (Option from: ['mmseqs2', 'single_sequence', 'custom_a3m']) in 'msa_method' Dropdown component
|
| 145 |
+
"unpaired_paired", # str (Option from: ['unpaired_paired', 'paired', 'unpaired']) in 'pair_mode' Dropdown component
|
| 146 |
+
True, # bool in 'collapse_identical' Checkbox component
|
| 147 |
+
0, # int (Option from: ['0', '1', '3', '6', '12', '24']) in 'num_recycles' Dropdown component
|
| 148 |
+
True, # bool in 'use_mlm' Checkbox component
|
| 149 |
+
True, # bool in 'use_dropout' Checkbox component
|
| 150 |
+
16, # int (Option from: ['16', '32', '64', '128', '256', '512']) in 'max_msa' Dropdown component
|
| 151 |
+
0, # int in 'random_seed' Textbox component
|
| 152 |
+
1, # int (Option from: ['1', '2', '4', '8', '16', '32']) in 'num_models' Dropdown component
|
| 153 |
+
]
|
| 154 |
+
},
|
| 155 |
+
).json()
|
| 156 |
+
print(response)
|
| 157 |
+
try:
|
| 158 |
+
data = response["data"]
|
| 159 |
+
except KeyError:
|
| 160 |
+
print(response["error"])
|
| 161 |
+
return None
|
| 162 |
+
with open(f"{jobname}.pdb", "w") as out:
|
| 163 |
+
out.writelines(data)
|
| 164 |
+
cmd.load(f"{jobname}.pdb")
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
cmd.extend("rosettafold2", query_rosettafold2)
|
| 168 |
+
cmd.extend("color_plddt", color_plddt)
|