Spaces:
Sleeping
Sleeping
new endpoint
Browse files- process.py +1 -1
- server.py +47 -0
- test_server.py +47 -1
process.py
CHANGED
|
@@ -223,7 +223,7 @@ async def improve_classification(
|
|
| 223 |
response = await asyncio.get_event_loop().run_in_executor(
|
| 224 |
None,
|
| 225 |
lambda: client.chat.completions.create(
|
| 226 |
-
model="gpt-
|
| 227 |
messages=[{"role": "user", "content": prompt}],
|
| 228 |
temperature=0,
|
| 229 |
max_tokens=300,
|
|
|
|
| 223 |
response = await asyncio.get_event_loop().run_in_executor(
|
| 224 |
None,
|
| 225 |
lambda: client.chat.completions.create(
|
| 226 |
+
model="gpt-3.5-turbo",
|
| 227 |
messages=[{"role": "user", "content": prompt}],
|
| 228 |
temperature=0,
|
| 229 |
max_tokens=300,
|
server.py
CHANGED
|
@@ -11,6 +11,7 @@ import os
|
|
| 11 |
from dotenv import load_dotenv
|
| 12 |
import pandas as pd
|
| 13 |
from utils import validate_results
|
|
|
|
| 14 |
|
| 15 |
# Load environment variables
|
| 16 |
load_dotenv()
|
|
@@ -88,6 +89,21 @@ class ValidationResponse(BaseModel):
|
|
| 88 |
misclassifications: Optional[List[Dict[str, Any]]] = None
|
| 89 |
suggested_improvements: Optional[List[str]] = None
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
@app.get("/health", response_model=HealthResponse)
|
| 92 |
async def health_check() -> HealthResponse:
|
| 93 |
"""Check the health status of the API"""
|
|
@@ -208,6 +224,37 @@ async def validate_classifications(validation_request: ValidationRequest) -> Val
|
|
| 208 |
except Exception as e:
|
| 209 |
raise HTTPException(status_code=500, detail=str(e))
|
| 210 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
if __name__ == "__main__":
|
| 212 |
import uvicorn
|
| 213 |
uvicorn.run("server:app", host="0.0.0.0", port=8000, reload=True)
|
|
|
|
| 11 |
from dotenv import load_dotenv
|
| 12 |
import pandas as pd
|
| 13 |
from utils import validate_results
|
| 14 |
+
from process import improve_classification
|
| 15 |
|
| 16 |
# Load environment variables
|
| 17 |
load_dotenv()
|
|
|
|
| 89 |
misclassifications: Optional[List[Dict[str, Any]]] = None
|
| 90 |
suggested_improvements: Optional[List[str]] = None
|
| 91 |
|
| 92 |
+
class ImprovementRequest(BaseModel):
|
| 93 |
+
df: Dict[str, Any] # JSON representation of the DataFrame
|
| 94 |
+
validation_report: str
|
| 95 |
+
text_columns: List[str]
|
| 96 |
+
categories: str
|
| 97 |
+
classifier_type: str
|
| 98 |
+
show_explanations: bool
|
| 99 |
+
file_path: str
|
| 100 |
+
|
| 101 |
+
class ImprovementResponse(BaseModel):
|
| 102 |
+
improved_df: Dict[str, Any] # JSON representation of the improved DataFrame
|
| 103 |
+
new_validation_report: str
|
| 104 |
+
success: bool
|
| 105 |
+
updated_categories: List[str]
|
| 106 |
+
|
| 107 |
@app.get("/health", response_model=HealthResponse)
|
| 108 |
async def health_check() -> HealthResponse:
|
| 109 |
"""Check the health status of the API"""
|
|
|
|
| 224 |
except Exception as e:
|
| 225 |
raise HTTPException(status_code=500, detail=str(e))
|
| 226 |
|
| 227 |
+
@app.post("/improve-classification", response_model=ImprovementResponse)
|
| 228 |
+
async def improve_classification_endpoint(request: ImprovementRequest) -> ImprovementResponse:
|
| 229 |
+
"""Improve classification based on validation report"""
|
| 230 |
+
try:
|
| 231 |
+
# Convert JSON DataFrame back to pandas DataFrame
|
| 232 |
+
df = pd.DataFrame.from_dict(request.df)
|
| 233 |
+
|
| 234 |
+
# Call the improve_classification function
|
| 235 |
+
improved_df, new_validation, success, updated_categories = await improve_classification(
|
| 236 |
+
df=df,
|
| 237 |
+
validation_report=request.validation_report,
|
| 238 |
+
text_columns=request.text_columns,
|
| 239 |
+
categories=request.categories,
|
| 240 |
+
classifier_type=request.classifier_type,
|
| 241 |
+
show_explanations=request.show_explanations,
|
| 242 |
+
file=request.file_path
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
# Convert improved DataFrame to JSON
|
| 246 |
+
improved_df_json = improved_df.to_dict() if improved_df is not None else None
|
| 247 |
+
|
| 248 |
+
return ImprovementResponse(
|
| 249 |
+
improved_df=improved_df_json,
|
| 250 |
+
new_validation_report=new_validation,
|
| 251 |
+
success=success,
|
| 252 |
+
updated_categories=updated_categories
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
except Exception as e:
|
| 256 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 257 |
+
|
| 258 |
if __name__ == "__main__":
|
| 259 |
import uvicorn
|
| 260 |
uvicorn.run("server:app", host="0.0.0.0", port=8000, reload=True)
|
test_server.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import requests
|
| 2 |
import json
|
| 3 |
from typing import List, Dict, Any, Optional
|
|
|
|
| 4 |
|
| 5 |
BASE_URL: str = "http://localhost:8000"
|
| 6 |
|
|
@@ -123,6 +124,50 @@ def test_validate_classifications() -> None:
|
|
| 123 |
)
|
| 124 |
print("\nValidation results:")
|
| 125 |
print(json.dumps(response.json(), indent=2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
if __name__ == "__main__":
|
| 128 |
print("Testing FastAPI server endpoints...")
|
|
@@ -131,4 +176,5 @@ if __name__ == "__main__":
|
|
| 131 |
test_classify_text()
|
| 132 |
test_classify_batch()
|
| 133 |
test_suggest_categories()
|
| 134 |
-
test_validate_classifications()
|
|
|
|
|
|
| 1 |
import requests
|
| 2 |
import json
|
| 3 |
from typing import List, Dict, Any, Optional
|
| 4 |
+
import pandas as pd
|
| 5 |
|
| 6 |
BASE_URL: str = "http://localhost:8000"
|
| 7 |
|
|
|
|
| 124 |
)
|
| 125 |
print("\nValidation results:")
|
| 126 |
print(json.dumps(response.json(), indent=2))
|
| 127 |
+
return response.json() # Return validation results for use in improve test
|
| 128 |
+
|
| 129 |
+
def test_improve_classification() -> None:
|
| 130 |
+
"""Test the improve-classification endpoint"""
|
| 131 |
+
# First get validation results
|
| 132 |
+
validation_results = test_validate_classifications()
|
| 133 |
+
|
| 134 |
+
# Load emails from CSV file
|
| 135 |
+
import csv
|
| 136 |
+
|
| 137 |
+
emails: List[Dict[str, str]] = []
|
| 138 |
+
with open("examples/emails.csv", "r", encoding="utf-8") as file:
|
| 139 |
+
reader = csv.DictReader(file)
|
| 140 |
+
for row in reader:
|
| 141 |
+
emails.append(row)
|
| 142 |
+
|
| 143 |
+
# Create a DataFrame with the first 5 emails
|
| 144 |
+
df = pd.DataFrame(emails[:5])
|
| 145 |
+
|
| 146 |
+
# Get current categories
|
| 147 |
+
categories_response: requests.Response = requests.post(
|
| 148 |
+
f"{BASE_URL}/suggest-categories",
|
| 149 |
+
json=[email["contenu"] for email in emails[:5]]
|
| 150 |
+
)
|
| 151 |
+
response_data: Dict[str, Any] = categories_response.json()
|
| 152 |
+
current_categories: str = ",".join(response_data["categories"])
|
| 153 |
+
|
| 154 |
+
# Send improvement request
|
| 155 |
+
improvement_request: Dict[str, Any] = {
|
| 156 |
+
"df": df.to_dict(),
|
| 157 |
+
"validation_report": validation_results["validation_report"],
|
| 158 |
+
"text_columns": ["contenu"],
|
| 159 |
+
"categories": current_categories,
|
| 160 |
+
"classifier_type": "gpt35",
|
| 161 |
+
"show_explanations": True,
|
| 162 |
+
"file_path": "examples/emails.csv"
|
| 163 |
+
}
|
| 164 |
+
|
| 165 |
+
response: requests.Response = requests.post(
|
| 166 |
+
f"{BASE_URL}/improve-classification",
|
| 167 |
+
json=improvement_request
|
| 168 |
+
)
|
| 169 |
+
print("\nImprovement results:")
|
| 170 |
+
print(json.dumps(response.json(), indent=2))
|
| 171 |
|
| 172 |
if __name__ == "__main__":
|
| 173 |
print("Testing FastAPI server endpoints...")
|
|
|
|
| 176 |
test_classify_text()
|
| 177 |
test_classify_batch()
|
| 178 |
test_suggest_categories()
|
| 179 |
+
test_validate_classifications()
|
| 180 |
+
test_improve_classification()
|