Spaces:
Sleeping
Sleeping
add server
Browse files- classifiers.py +0 -267
- requirements.txt +95 -9
- server.py +64 -0
- test_server.py +43 -0
classifiers.py
DELETED
|
@@ -1,267 +0,0 @@
|
|
| 1 |
-
import numpy as np
|
| 2 |
-
import pandas as pd
|
| 3 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 4 |
-
from sklearn.cluster import KMeans
|
| 5 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
| 6 |
-
import random
|
| 7 |
-
import json
|
| 8 |
-
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 9 |
-
from typing import List, Dict, Any, Optional
|
| 10 |
-
from prompts import CATEGORY_SUGGESTION_PROMPT, TEXT_CLASSIFICATION_PROMPT
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
class BaseClassifier:
|
| 14 |
-
"""Base class for text classifiers"""
|
| 15 |
-
|
| 16 |
-
def __init__(self):
|
| 17 |
-
pass
|
| 18 |
-
|
| 19 |
-
def classify(self, texts, categories=None):
|
| 20 |
-
"""
|
| 21 |
-
Classify a list of texts into categories
|
| 22 |
-
|
| 23 |
-
Args:
|
| 24 |
-
texts (list): List of text strings to classify
|
| 25 |
-
categories (list, optional): List of category names. If None, categories will be auto-detected
|
| 26 |
-
|
| 27 |
-
Returns:
|
| 28 |
-
list: List of classification results with categories, confidence scores, and explanations
|
| 29 |
-
"""
|
| 30 |
-
raise NotImplementedError("Subclasses must implement this method")
|
| 31 |
-
|
| 32 |
-
def _generate_default_categories(self, texts, num_clusters=5):
|
| 33 |
-
"""
|
| 34 |
-
Generate default categories based on text clustering
|
| 35 |
-
|
| 36 |
-
Args:
|
| 37 |
-
texts (list): List of text strings
|
| 38 |
-
num_clusters (int): Number of clusters to generate
|
| 39 |
-
|
| 40 |
-
Returns:
|
| 41 |
-
list: List of category names
|
| 42 |
-
"""
|
| 43 |
-
# Simple implementation - in real system this would be more sophisticated
|
| 44 |
-
default_categories = [f"Category {i+1}" for i in range(num_clusters)]
|
| 45 |
-
return default_categories
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
class TFIDFClassifier(BaseClassifier):
|
| 49 |
-
"""Classifier using TF-IDF and clustering for fast classification"""
|
| 50 |
-
|
| 51 |
-
def __init__(self):
|
| 52 |
-
super().__init__()
|
| 53 |
-
self.vectorizer = TfidfVectorizer(
|
| 54 |
-
max_features=1000, stop_words="english", ngram_range=(1, 2)
|
| 55 |
-
)
|
| 56 |
-
self.model = None
|
| 57 |
-
self.feature_names = None
|
| 58 |
-
self.categories = None
|
| 59 |
-
self.centroids = None
|
| 60 |
-
|
| 61 |
-
def classify(self, texts, categories=None):
|
| 62 |
-
"""Classify texts using TF-IDF and clustering"""
|
| 63 |
-
# Vectorize the texts
|
| 64 |
-
X = self.vectorizer.fit_transform(texts)
|
| 65 |
-
self.feature_names = self.vectorizer.get_feature_names_out()
|
| 66 |
-
|
| 67 |
-
# Auto-detect categories if not provided
|
| 68 |
-
if not categories:
|
| 69 |
-
num_clusters = min(5, len(texts)) # Don't create more clusters than texts
|
| 70 |
-
self.categories = self._generate_default_categories(texts, num_clusters)
|
| 71 |
-
else:
|
| 72 |
-
self.categories = categories
|
| 73 |
-
num_clusters = len(categories)
|
| 74 |
-
|
| 75 |
-
# Cluster the texts
|
| 76 |
-
self.model = KMeans(n_clusters=num_clusters, random_state=42)
|
| 77 |
-
clusters = self.model.fit_predict(X)
|
| 78 |
-
self.centroids = self.model.cluster_centers_
|
| 79 |
-
|
| 80 |
-
# Calculate distances to centroids for confidence
|
| 81 |
-
distances = self._calculate_distances(X)
|
| 82 |
-
|
| 83 |
-
# Prepare results
|
| 84 |
-
results = []
|
| 85 |
-
for i, text in enumerate(texts):
|
| 86 |
-
cluster_idx = clusters[i]
|
| 87 |
-
|
| 88 |
-
# Calculate confidence (inverse of distance, normalized)
|
| 89 |
-
confidence = self._calculate_confidence(distances[i])
|
| 90 |
-
|
| 91 |
-
# Create explanation
|
| 92 |
-
explanation = self._generate_explanation(X[i], cluster_idx)
|
| 93 |
-
|
| 94 |
-
results.append(
|
| 95 |
-
{
|
| 96 |
-
"category": self.categories[cluster_idx],
|
| 97 |
-
"confidence": confidence,
|
| 98 |
-
"explanation": explanation,
|
| 99 |
-
}
|
| 100 |
-
)
|
| 101 |
-
|
| 102 |
-
return results
|
| 103 |
-
|
| 104 |
-
def _calculate_distances(self, X):
|
| 105 |
-
"""Calculate distances from each point to each centroid"""
|
| 106 |
-
return np.sqrt(
|
| 107 |
-
(
|
| 108 |
-
(X.toarray()[:, np.newaxis, :] - self.centroids[np.newaxis, :, :]) ** 2
|
| 109 |
-
).sum(axis=2)
|
| 110 |
-
)
|
| 111 |
-
|
| 112 |
-
def _calculate_confidence(self, distances):
|
| 113 |
-
"""Convert distances to confidence scores (0-100)"""
|
| 114 |
-
min_dist = np.min(distances)
|
| 115 |
-
max_dist = np.max(distances)
|
| 116 |
-
|
| 117 |
-
# Normalize and invert (smaller distance = higher confidence)
|
| 118 |
-
if max_dist == min_dist:
|
| 119 |
-
return 70 # Default mid-range confidence when all distances are equal
|
| 120 |
-
|
| 121 |
-
normalized_dist = (distances - min_dist) / (max_dist - min_dist)
|
| 122 |
-
min_normalized = np.min(normalized_dist)
|
| 123 |
-
|
| 124 |
-
# Invert and scale to 50-100 range (TF-IDF is never 100% confident)
|
| 125 |
-
confidence = 100 - (min_normalized * 50)
|
| 126 |
-
return round(confidence, 1)
|
| 127 |
-
|
| 128 |
-
def _generate_explanation(self, text_vector, cluster_idx):
|
| 129 |
-
"""Generate an explanation for the classification"""
|
| 130 |
-
# Get the most important features for this cluster
|
| 131 |
-
centroid = self.centroids[cluster_idx]
|
| 132 |
-
|
| 133 |
-
# Get indices of top features for this text
|
| 134 |
-
text_array = text_vector.toarray()[0]
|
| 135 |
-
top_indices = text_array.argsort()[-5:][::-1]
|
| 136 |
-
|
| 137 |
-
# Get the feature names for these indices
|
| 138 |
-
top_features = [self.feature_names[i] for i in top_indices if text_array[i] > 0]
|
| 139 |
-
|
| 140 |
-
if not top_features:
|
| 141 |
-
return "No significant features identified for this classification."
|
| 142 |
-
|
| 143 |
-
explanation = f"Classification based on key terms: {', '.join(top_features)}"
|
| 144 |
-
return explanation
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
class LLMClassifier(BaseClassifier):
|
| 148 |
-
"""Classifier using a Large Language Model for more accurate but slower classification"""
|
| 149 |
-
|
| 150 |
-
def __init__(self, client, model="gpt-3.5-turbo"):
|
| 151 |
-
super().__init__()
|
| 152 |
-
self.client = client
|
| 153 |
-
self.model = model
|
| 154 |
-
|
| 155 |
-
def classify(
|
| 156 |
-
self, texts: List[str], categories: Optional[List[str]] = None
|
| 157 |
-
) -> List[Dict[str, Any]]:
|
| 158 |
-
"""Classify texts using an LLM with parallel processing"""
|
| 159 |
-
if not categories:
|
| 160 |
-
# First, use LLM to generate appropriate categories
|
| 161 |
-
categories = self._suggest_categories(texts)
|
| 162 |
-
|
| 163 |
-
# Process texts in parallel
|
| 164 |
-
with ThreadPoolExecutor(max_workers=10) as executor:
|
| 165 |
-
# Submit all tasks with their original indices
|
| 166 |
-
future_to_index = {
|
| 167 |
-
executor.submit(self._classify_text, text, categories): idx
|
| 168 |
-
for idx, text in enumerate(texts)
|
| 169 |
-
}
|
| 170 |
-
|
| 171 |
-
# Initialize results list with None values
|
| 172 |
-
results = [None] * len(texts)
|
| 173 |
-
|
| 174 |
-
# Collect results as they complete
|
| 175 |
-
for future in as_completed(future_to_index):
|
| 176 |
-
original_idx = future_to_index[future]
|
| 177 |
-
try:
|
| 178 |
-
result = future.result()
|
| 179 |
-
results[original_idx] = result
|
| 180 |
-
except Exception as e:
|
| 181 |
-
print(f"Error processing text: {str(e)}")
|
| 182 |
-
results[original_idx] = {
|
| 183 |
-
"category": categories[0],
|
| 184 |
-
"confidence": 50,
|
| 185 |
-
"explanation": f"Error during classification: {str(e)}",
|
| 186 |
-
}
|
| 187 |
-
|
| 188 |
-
return results
|
| 189 |
-
|
| 190 |
-
def _suggest_categories(self, texts: List[str], sample_size: int = 20) -> List[str]:
|
| 191 |
-
"""Use LLM to suggest appropriate categories for the dataset"""
|
| 192 |
-
# Take a sample of texts to avoid token limitations
|
| 193 |
-
if len(texts) > sample_size:
|
| 194 |
-
sample_texts = random.sample(texts, sample_size)
|
| 195 |
-
else:
|
| 196 |
-
sample_texts = texts
|
| 197 |
-
|
| 198 |
-
prompt = CATEGORY_SUGGESTION_PROMPT.format("\n---\n".join(sample_texts))
|
| 199 |
-
|
| 200 |
-
try:
|
| 201 |
-
response = self.client.chat.completions.create(
|
| 202 |
-
model=self.model,
|
| 203 |
-
messages=[{"role": "user", "content": prompt}],
|
| 204 |
-
temperature=0.2,
|
| 205 |
-
max_tokens=100,
|
| 206 |
-
)
|
| 207 |
-
|
| 208 |
-
# Parse response to get categories
|
| 209 |
-
categories_text = response.choices[0].message.content.strip()
|
| 210 |
-
categories = [cat.strip() for cat in categories_text.split(",")]
|
| 211 |
-
|
| 212 |
-
return categories
|
| 213 |
-
except Exception as e:
|
| 214 |
-
# Fallback to default categories on error
|
| 215 |
-
print(f"Error suggesting categories: {str(e)}")
|
| 216 |
-
return self._generate_default_categories(texts)
|
| 217 |
-
|
| 218 |
-
def _classify_text(self, text: str, categories: List[str]) -> Dict[str, Any]:
|
| 219 |
-
"""Use LLM to classify a single text"""
|
| 220 |
-
prompt = TEXT_CLASSIFICATION_PROMPT.format(
|
| 221 |
-
categories=", ".join(categories), text=text
|
| 222 |
-
)
|
| 223 |
-
|
| 224 |
-
try:
|
| 225 |
-
response = self.client.chat.completions.create(
|
| 226 |
-
model=self.model,
|
| 227 |
-
messages=[{"role": "user", "content": prompt}],
|
| 228 |
-
temperature=0,
|
| 229 |
-
max_tokens=200,
|
| 230 |
-
)
|
| 231 |
-
|
| 232 |
-
# Parse JSON response
|
| 233 |
-
response_text = response.choices[0].message.content.strip()
|
| 234 |
-
|
| 235 |
-
result = json.loads(response_text)
|
| 236 |
-
# Ensure all required fields are present
|
| 237 |
-
if not all(k in result for k in ["category", "confidence", "explanation"]):
|
| 238 |
-
raise ValueError("Missing required fields in LLM response")
|
| 239 |
-
|
| 240 |
-
# Validate category is in the list
|
| 241 |
-
if result["category"] not in categories:
|
| 242 |
-
result["category"] = categories[
|
| 243 |
-
0
|
| 244 |
-
] # Default to first category if invalid
|
| 245 |
-
|
| 246 |
-
# Validate confidence is a number between 0 and 100
|
| 247 |
-
try:
|
| 248 |
-
result["confidence"] = float(result["confidence"])
|
| 249 |
-
if not 0 <= result["confidence"] <= 100:
|
| 250 |
-
result["confidence"] = 50
|
| 251 |
-
except:
|
| 252 |
-
result["confidence"] = 50
|
| 253 |
-
|
| 254 |
-
return result
|
| 255 |
-
except json.JSONDecodeError:
|
| 256 |
-
# Fall back to simple parsing if JSON fails
|
| 257 |
-
category = categories[0] # Default
|
| 258 |
-
for cat in categories:
|
| 259 |
-
if cat.lower() in response_text.lower():
|
| 260 |
-
category = cat
|
| 261 |
-
break
|
| 262 |
-
|
| 263 |
-
return {
|
| 264 |
-
"category": category,
|
| 265 |
-
"confidence": 50,
|
| 266 |
-
"explanation": f"Classification based on language model analysis. (Note: Structured response parsing failed)",
|
| 267 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,9 +1,95 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
aiofiles==24.1.0
|
| 2 |
+
aiohappyeyeballs==2.6.1
|
| 3 |
+
aiohttp==3.11.16
|
| 4 |
+
aiosignal==1.3.2
|
| 5 |
+
annotated-types==0.7.0
|
| 6 |
+
anyio==4.9.0
|
| 7 |
+
attrs==25.3.0
|
| 8 |
+
audioop-lts==0.2.1
|
| 9 |
+
certifi==2025.1.31
|
| 10 |
+
charset-normalizer==3.4.1
|
| 11 |
+
click==8.1.8
|
| 12 |
+
contourpy==1.3.2
|
| 13 |
+
cycler==0.12.1
|
| 14 |
+
distro==1.9.0
|
| 15 |
+
et-xmlfile==2.0.0
|
| 16 |
+
fastapi==0.115.12
|
| 17 |
+
ffmpy==0.5.0
|
| 18 |
+
filelock==3.18.0
|
| 19 |
+
fonttools==4.57.0
|
| 20 |
+
frozenlist==1.5.0
|
| 21 |
+
fsspec==2025.3.2
|
| 22 |
+
gradio==5.25.1
|
| 23 |
+
gradio-client==1.8.0
|
| 24 |
+
groovy==0.1.2
|
| 25 |
+
h11==0.14.0
|
| 26 |
+
httpcore==1.0.8
|
| 27 |
+
httpx==0.28.1
|
| 28 |
+
huggingface-hub==0.30.2
|
| 29 |
+
idna==3.10
|
| 30 |
+
importlib-metadata==8.6.1
|
| 31 |
+
jinja2==3.1.6
|
| 32 |
+
jiter==0.9.0
|
| 33 |
+
joblib==1.4.2
|
| 34 |
+
jsonschema==4.23.0
|
| 35 |
+
jsonschema-specifications==2024.10.1
|
| 36 |
+
kiwisolver==1.4.8
|
| 37 |
+
litellm==1.66.1
|
| 38 |
+
markdown-it-py==3.0.0
|
| 39 |
+
markupsafe==3.0.2
|
| 40 |
+
matplotlib==3.10.1
|
| 41 |
+
mdurl==0.1.2
|
| 42 |
+
mpmath==1.3.0
|
| 43 |
+
multidict==6.4.3
|
| 44 |
+
networkx==3.4.2
|
| 45 |
+
numpy==2.2.4
|
| 46 |
+
openai==1.74.0
|
| 47 |
+
openpyxl==3.1.5
|
| 48 |
+
orjson==3.10.16
|
| 49 |
+
packaging==24.2
|
| 50 |
+
pandas==2.2.3
|
| 51 |
+
pillow==11.2.1
|
| 52 |
+
propcache==0.3.1
|
| 53 |
+
pydantic==2.11.3
|
| 54 |
+
pydantic-core==2.33.1
|
| 55 |
+
pydub==0.25.1
|
| 56 |
+
pygments==2.19.1
|
| 57 |
+
pyparsing==3.2.3
|
| 58 |
+
python-dateutil==2.9.0.post0
|
| 59 |
+
python-dotenv==1.1.0
|
| 60 |
+
python-multipart==0.0.20
|
| 61 |
+
pytz==2025.2
|
| 62 |
+
pyyaml==6.0.2
|
| 63 |
+
referencing==0.36.2
|
| 64 |
+
regex==2024.11.6
|
| 65 |
+
requests==2.32.3
|
| 66 |
+
rich==14.0.0
|
| 67 |
+
rpds-py==0.24.0
|
| 68 |
+
ruff==0.11.5
|
| 69 |
+
safehttpx==0.1.6
|
| 70 |
+
safetensors==0.5.3
|
| 71 |
+
scikit-learn==1.6.1
|
| 72 |
+
scipy==1.15.2
|
| 73 |
+
semantic-version==2.10.0
|
| 74 |
+
setuptools==78.1.0
|
| 75 |
+
shellingham==1.5.4
|
| 76 |
+
six==1.17.0
|
| 77 |
+
sniffio==1.3.1
|
| 78 |
+
starlette==0.46.2
|
| 79 |
+
sympy==1.13.1
|
| 80 |
+
threadpoolctl==3.6.0
|
| 81 |
+
tiktoken==0.9.0
|
| 82 |
+
tokenizers==0.21.1
|
| 83 |
+
tomlkit==0.13.2
|
| 84 |
+
torch==2.6.0
|
| 85 |
+
tqdm==4.67.1
|
| 86 |
+
transformers==4.51.3
|
| 87 |
+
typer==0.15.2
|
| 88 |
+
typing-extensions==4.13.2
|
| 89 |
+
typing-inspection==0.4.0
|
| 90 |
+
tzdata==2025.2
|
| 91 |
+
urllib3==2.4.0
|
| 92 |
+
uvicorn==0.34.1
|
| 93 |
+
websockets==15.0.1
|
| 94 |
+
yarl==1.19.0
|
| 95 |
+
zipp==3.21.0
|
server.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
from typing import List, Optional
|
| 5 |
+
import json
|
| 6 |
+
from classifiers.llm import LLMClassifier
|
| 7 |
+
from litellm import completion
|
| 8 |
+
import asyncio
|
| 9 |
+
|
| 10 |
+
app = FastAPI()
|
| 11 |
+
|
| 12 |
+
# Configure CORS
|
| 13 |
+
app.add_middleware(
|
| 14 |
+
CORSMiddleware,
|
| 15 |
+
allow_origins=["*"], # In production, replace with specific origins
|
| 16 |
+
allow_credentials=True,
|
| 17 |
+
allow_methods=["*"],
|
| 18 |
+
allow_headers=["*"],
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
# Initialize the LLM classifier
|
| 22 |
+
classifier = LLMClassifier(client=completion, model="gpt-3.5-turbo")
|
| 23 |
+
|
| 24 |
+
class TextInput(BaseModel):
|
| 25 |
+
text: str
|
| 26 |
+
categories: Optional[List[str]] = None
|
| 27 |
+
|
| 28 |
+
class ClassificationResponse(BaseModel):
|
| 29 |
+
category: str
|
| 30 |
+
confidence: float
|
| 31 |
+
explanation: str
|
| 32 |
+
|
| 33 |
+
class CategorySuggestionResponse(BaseModel):
|
| 34 |
+
categories: List[str]
|
| 35 |
+
|
| 36 |
+
@app.post("/classify", response_model=ClassificationResponse)
|
| 37 |
+
async def classify_text(text_input: TextInput):
|
| 38 |
+
try:
|
| 39 |
+
# Use async classification
|
| 40 |
+
results = await classifier.classify_async(
|
| 41 |
+
[text_input.text],
|
| 42 |
+
text_input.categories
|
| 43 |
+
)
|
| 44 |
+
result = results[0] # Get first result since we're classifying one text
|
| 45 |
+
|
| 46 |
+
return ClassificationResponse(
|
| 47 |
+
category=result["category"],
|
| 48 |
+
confidence=result["confidence"],
|
| 49 |
+
explanation=result["explanation"]
|
| 50 |
+
)
|
| 51 |
+
except Exception as e:
|
| 52 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 53 |
+
|
| 54 |
+
@app.post("/suggest-categories", response_model=CategorySuggestionResponse)
|
| 55 |
+
async def suggest_categories(texts: List[str]):
|
| 56 |
+
try:
|
| 57 |
+
categories = await classifier._suggest_categories_async(texts)
|
| 58 |
+
return CategorySuggestionResponse(categories=categories)
|
| 59 |
+
except Exception as e:
|
| 60 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 61 |
+
|
| 62 |
+
if __name__ == "__main__":
|
| 63 |
+
import uvicorn
|
| 64 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
test_server.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
import json
|
| 3 |
+
|
| 4 |
+
BASE_URL = "http://localhost:8000"
|
| 5 |
+
|
| 6 |
+
def test_classify_text():
|
| 7 |
+
# Test with default categories
|
| 8 |
+
response = requests.post(
|
| 9 |
+
f"{BASE_URL}/classify",
|
| 10 |
+
json={"text": "This is a sample text about technology and innovation."}
|
| 11 |
+
)
|
| 12 |
+
print("Classification with default categories:")
|
| 13 |
+
print(json.dumps(response.json(), indent=2))
|
| 14 |
+
|
| 15 |
+
# Test with custom categories
|
| 16 |
+
response = requests.post(
|
| 17 |
+
f"{BASE_URL}/classify",
|
| 18 |
+
json={
|
| 19 |
+
"text": "This is a sample text about technology and innovation.",
|
| 20 |
+
"categories": ["Technology", "Business", "Science", "Sports"]
|
| 21 |
+
}
|
| 22 |
+
)
|
| 23 |
+
print("\nClassification with custom categories:")
|
| 24 |
+
print(json.dumps(response.json(), indent=2))
|
| 25 |
+
|
| 26 |
+
def test_suggest_categories():
|
| 27 |
+
texts = [
|
| 28 |
+
"This is a text about artificial intelligence and machine learning.",
|
| 29 |
+
"A new breakthrough in quantum computing has been announced.",
|
| 30 |
+
"The latest smartphone features innovative camera technology."
|
| 31 |
+
]
|
| 32 |
+
|
| 33 |
+
response = requests.post(
|
| 34 |
+
f"{BASE_URL}/suggest-categories",
|
| 35 |
+
json=texts
|
| 36 |
+
)
|
| 37 |
+
print("\nSuggested categories:")
|
| 38 |
+
print(json.dumps(response.json(), indent=2))
|
| 39 |
+
|
| 40 |
+
if __name__ == "__main__":
|
| 41 |
+
print("Testing FastAPI server endpoints...")
|
| 42 |
+
test_classify_text()
|
| 43 |
+
test_suggest_categories()
|