classifieur / app.py
simondh's picture
add endpoints
156898c
import os
import gradio as gr
import asyncio
import json
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import logging
from dotenv import load_dotenv
from process import update_api_key, process_file_async, export_results, improve_classification
from client import get_client, initialize_client
from utils import load_data, visualize_results, analyze_text_columns, get_sample_texts
from classifiers.llm import LLMClassifier
# Load environment variables from .env file
load_dotenv()
# Import local modules
from prompts import (
CATEGORY_SUGGESTION_PROMPT,
ADDITIONAL_CATEGORY_PROMPT,
VALIDATION_ANALYSIS_PROMPT,
CATEGORY_IMPROVEMENT_PROMPT,
)
# Configure logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
# Initialize API key from environment variable
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "")
# Initialize client if API key is available
if OPENAI_API_KEY:
success, message = initialize_client(OPENAI_API_KEY)
if success:
logging.info("OpenAI client initialized successfully")
else:
logging.error(f"Failed to initialize OpenAI client: {message}")
# Create Gradio interface
with gr.Blocks(title="Text Classification System") as demo:
gr.Markdown("# Text Classification System")
gr.Markdown("Upload your data file (Excel/CSV) and classify text using AI")
with gr.Tab("Setup"):
api_key_input = gr.Textbox(
label="OpenAI API Key",
placeholder="Enter your API key here",
type="password",
value=OPENAI_API_KEY,
)
api_key_button = gr.Button("Update API Key")
api_key_message = gr.Textbox(label="Status", interactive=False)
# Display current API status
client = get_client()
api_status = "API Key is set" if client else "No API Key found. Please set one."
gr.Markdown(f"**Current API Status**: {api_status}")
api_key_button.click(
update_api_key, inputs=[api_key_input], outputs=[api_key_message]
)
with gr.Tab("Classify Data"):
with gr.Column():
file_input = gr.File(label="Upload Excel/CSV File")
# Variable to store available columns
available_columns = gr.State([])
# Button to load file and suggest categories
load_categories_button = gr.Button("Load File")
# Display original dataframe
original_df = gr.Dataframe(
label="Original Data", interactive=False, visible=False
)
with gr.Row():
with gr.Column():
suggested_categories = gr.CheckboxGroup(
label="Suggested Categories",
choices=[],
value=[],
interactive=True,
visible=False,
)
new_category = gr.Textbox(
label="Add New Category",
placeholder="Enter a new category name",
visible=False,
)
with gr.Row():
add_category_button = gr.Button("Add Category", visible=False)
suggest_category_button = gr.Button(
"Suggest Category", visible=False
)
# Original categories input (hidden)
categories = gr.Textbox(visible=False)
with gr.Column():
text_column = gr.CheckboxGroup(
label="Select Text Columns",
choices=[],
interactive=True,
visible=False,
)
classifier_type = gr.Dropdown(
choices=[
("TF-IDF (Rapide, <1000 lignes)", "tfidf"),
("LLM GPT-3.5 (Fiable, <1000 lignes)", "gpt35"),
("LLM GPT-4 (Très fiable, <500 lignes)", "gpt4"),
("TF-IDF + LLM (Hybride, >1000 lignes)", "hybrid"),
],
label="Modèle de classification",
value="gpt35",
visible=False,
)
show_explanations = gr.Checkbox(
label="Show Explanations", value=True, visible=False
)
process_button = gr.Button("Process and Classify", visible=False)
results_df = gr.Dataframe(interactive=True, visible=False)
# Create containers for visualization and validation report
with gr.Row(visible=False) as results_row:
with gr.Column():
visualization = gr.Plot(label="Classification Distribution")
with gr.Row():
csv_download = gr.File(label="Download CSV", visible=False)
excel_download = gr.File(label="Download Excel", visible=False)
with gr.Column():
validation_output = gr.Textbox(
label="Validation Report", interactive=True,
lines=15
)
improve_button = gr.Button(
"Improve Classification with Report", visible=False
)
# Function to load file and suggest categories
async def load_file_and_suggest_categories(file):
if not file:
return (
[],
gr.CheckboxGroup(choices=[]),
gr.CheckboxGroup(choices=[], visible=False),
gr.Textbox(visible=False),
gr.Button(visible=False),
gr.Button(visible=False),
gr.CheckboxGroup(choices=[], visible=False),
gr.Dropdown(visible=False),
gr.Checkbox(visible=False),
gr.Button(visible=False),
gr.Dataframe(visible=False),
)
try:
df = load_data(file.name)
columns = list(df.columns)
# Analyze columns to suggest text columns
suggested_text_columns = analyze_text_columns(df)
# Get sample texts for category suggestion
sample_texts = get_sample_texts(df, suggested_text_columns)
# Use LLM to suggest categories
if client:
classifier = LLMClassifier(client=client)
suggested_cats = await classifier.suggest_categories_from_texts(sample_texts)
else:
suggested_cats = ["Positive", "Negative", "Neutral", "Mixed", "Other"]
return (
columns,
gr.CheckboxGroup(choices=columns, value=suggested_text_columns),
gr.CheckboxGroup(
choices=suggested_cats, value=suggested_cats, visible=True
),
gr.Textbox(visible=True),
gr.Button(visible=True),
gr.Button(visible=True),
gr.CheckboxGroup(
choices=columns, value=suggested_text_columns, visible=True
),
gr.Dropdown(visible=True),
gr.Checkbox(visible=True),
gr.Button(visible=True),
gr.Dataframe(value=df, visible=True),
)
except Exception as e:
return (
[],
gr.CheckboxGroup(choices=[]),
gr.CheckboxGroup(choices=[], visible=False),
gr.Textbox(visible=False),
gr.Button(visible=False),
gr.Button(visible=False),
gr.CheckboxGroup(choices=[], visible=False),
gr.Dropdown(visible=False),
gr.Checkbox(visible=False),
gr.Button(visible=False),
gr.Dataframe(visible=False),
)
# Function to add a new category
def add_new_category(current_categories, new_category):
if not new_category or new_category.strip() == "":
return current_categories
new_categories = current_categories + [new_category.strip()]
return gr.CheckboxGroup(choices=new_categories, value=new_categories)
# Function to update categories textbox
def update_categories_textbox(selected_categories):
return ", ".join(selected_categories)
# Function to show results after processing
def show_results(df, validation_report):
"""Show the results after processing"""
if df is None:
return (
gr.Row(visible=False),
gr.File(visible=False),
gr.File(visible=False),
gr.Dataframe(visible=False),
)
# Export to both formats
csv_path = export_results(df, "csv")
excel_path = export_results(df, "excel")
return (
gr.Row(visible=True),
gr.File(value=csv_path, visible=True),
gr.File(value=excel_path, visible=True),
gr.Dataframe(value=df, visible=True),
)
# Function to suggest a new category
async def suggest_new_category(file, current_categories, text_columns):
if not file or not text_columns:
return gr.CheckboxGroup(
choices=current_categories, value=current_categories
)
try:
df = load_data(file.name)
sample_texts = get_sample_texts(df, text_columns)
if client:
classifier = LLMClassifier(client=client)
new_categories = await classifier.suggest_categories_from_texts(
sample_texts, current_categories
)
return gr.CheckboxGroup(
choices=new_categories, value=new_categories
)
return gr.CheckboxGroup(
choices=current_categories, value=current_categories
)
except Exception as e:
return gr.CheckboxGroup(
choices=current_categories, value=current_categories
)
# Function to handle export and show download button
def handle_export(df, format_type):
if df is None:
return gr.File(visible=False)
file_path = export_results(df, format_type)
return gr.File(value=file_path, visible=True)
# Connect functions
load_categories_button.click(
load_file_and_suggest_categories,
inputs=[file_input],
outputs=[
available_columns,
text_column,
suggested_categories,
new_category,
add_category_button,
suggest_category_button,
text_column,
classifier_type,
show_explanations,
process_button,
original_df,
],
)
add_category_button.click(
add_new_category,
inputs=[suggested_categories, new_category],
outputs=[suggested_categories],
)
suggested_categories.change(
update_categories_textbox,
inputs=[suggested_categories],
outputs=[categories],
)
suggest_category_button.click(
suggest_new_category,
inputs=[file_input, suggested_categories, text_column],
outputs=[suggested_categories],
)
process_button.click(
lambda: gr.Dataframe(visible=True), inputs=[], outputs=[results_df]
).then(
process_file_async,
inputs=[
file_input,
text_column,
categories,
classifier_type,
show_explanations,
],
outputs=[results_df, validation_output],
).then(
show_results,
inputs=[results_df, validation_output],
outputs=[results_row, csv_download, excel_download, results_df],
).then(
visualize_results, inputs=[results_df, text_column], outputs=[visualization]
).then(
lambda x: gr.Button(visible=True), inputs=[], outputs=[improve_button]
)
improve_button.click(
improve_classification,
inputs=[
results_df,
validation_output,
text_column,
categories,
classifier_type,
show_explanations,
file_input,
],
outputs=[
results_df,
validation_output,
improve_button,
suggested_categories,
],
).then(
show_results,
inputs=[results_df, validation_output],
outputs=[results_row, csv_download, excel_download, results_df],
).then(
visualize_results, inputs=[results_df, text_column], outputs=[visualization]
)
def create_example_data():
"""Create example data for demonstration"""
from utils import create_example_file
example_path = create_example_file()
return f"Example file created at: {example_path}"
if __name__ == "__main__":
# Create examples directory and sample file if it doesn't exist
if not os.path.exists("examples"):
create_example_data()
# Launch the Gradio app
demo.launch()