Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import joblib
|
|
3 |
import pandas as pd
|
4 |
import datasets
|
5 |
import json
|
|
|
6 |
|
7 |
# Load the model
|
8 |
pipe = joblib.load("./model.pkl")
|
@@ -32,18 +33,44 @@ outputs = [gr.Dataframe(row_count=(2, "dynamic"), col_count=(1, "fixed"), label=
|
|
32 |
#predictions = pipe.predict(data)
|
33 |
#return pd.DataFrame(predictions, columns=["Depression"])
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
def infer(inputs):
|
36 |
data = pd.DataFrame(inputs, columns=headers)
|
|
|
|
|
|
|
|
|
37 |
# Add missing columns with default values (e.g., 0)
|
38 |
for col in all_headers:
|
39 |
if col not in data.columns:
|
40 |
data[col] = 0
|
|
|
41 |
# Ensure the order of columns matches the training data
|
42 |
data = data[all_headers]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
predictions = pipe.predict(data)
|
44 |
return pd.DataFrame(predictions, columns=["Depression"])
|
45 |
|
46 |
|
|
|
47 |
gr.Interface(
|
48 |
fn=infer,
|
49 |
inputs=inputs,
|
|
|
3 |
import pandas as pd
|
4 |
import datasets
|
5 |
import json
|
6 |
+
import numpy as np
|
7 |
|
8 |
# Load the model
|
9 |
pipe = joblib.load("./model.pkl")
|
|
|
33 |
#predictions = pipe.predict(data)
|
34 |
#return pd.DataFrame(predictions, columns=["Depression"])
|
35 |
|
36 |
+
#code to fix missing columns with na
|
37 |
+
#def infer(inputs):
|
38 |
+
#data = pd.DataFrame(inputs, columns=headers)
|
39 |
+
# Add missing columns with default values (e.g., 0)
|
40 |
+
#for col in all_headers:
|
41 |
+
#if col not in data.columns:
|
42 |
+
#data[col] = 0
|
43 |
+
# Ensure the order of columns matches the training data
|
44 |
+
#data = data[all_headers]
|
45 |
+
#predictions = pipe.predict(data)
|
46 |
+
#return pd.DataFrame(predictions, columns=["Depression"])
|
47 |
+
|
48 |
+
|
49 |
def infer(inputs):
|
50 |
data = pd.DataFrame(inputs, columns=headers)
|
51 |
+
|
52 |
+
# Replace empty strings with NaN
|
53 |
+
data = data.replace('', np.nan)
|
54 |
+
|
55 |
# Add missing columns with default values (e.g., 0)
|
56 |
for col in all_headers:
|
57 |
if col not in data.columns:
|
58 |
data[col] = 0
|
59 |
+
|
60 |
# Ensure the order of columns matches the training data
|
61 |
data = data[all_headers]
|
62 |
+
|
63 |
+
# Fill NaN values with default values (e.g., 0)
|
64 |
+
data = data.fillna(0)
|
65 |
+
|
66 |
+
# Convert all data to float
|
67 |
+
data = data.astype(float)
|
68 |
+
|
69 |
predictions = pipe.predict(data)
|
70 |
return pd.DataFrame(predictions, columns=["Depression"])
|
71 |
|
72 |
|
73 |
+
|
74 |
gr.Interface(
|
75 |
fn=infer,
|
76 |
inputs=inputs,
|