silvaKenpachi commited on
Commit
f0656c0
·
verified ·
1 Parent(s): b0e84c2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -0
app.py CHANGED
@@ -3,6 +3,7 @@ import joblib
3
  import pandas as pd
4
  import datasets
5
  import json
 
6
 
7
  # Load the model
8
  pipe = joblib.load("./model.pkl")
@@ -32,18 +33,44 @@ outputs = [gr.Dataframe(row_count=(2, "dynamic"), col_count=(1, "fixed"), label=
32
  #predictions = pipe.predict(data)
33
  #return pd.DataFrame(predictions, columns=["Depression"])
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  def infer(inputs):
36
  data = pd.DataFrame(inputs, columns=headers)
 
 
 
 
37
  # Add missing columns with default values (e.g., 0)
38
  for col in all_headers:
39
  if col not in data.columns:
40
  data[col] = 0
 
41
  # Ensure the order of columns matches the training data
42
  data = data[all_headers]
 
 
 
 
 
 
 
43
  predictions = pipe.predict(data)
44
  return pd.DataFrame(predictions, columns=["Depression"])
45
 
46
 
 
47
  gr.Interface(
48
  fn=infer,
49
  inputs=inputs,
 
3
  import pandas as pd
4
  import datasets
5
  import json
6
+ import numpy as np
7
 
8
  # Load the model
9
  pipe = joblib.load("./model.pkl")
 
33
  #predictions = pipe.predict(data)
34
  #return pd.DataFrame(predictions, columns=["Depression"])
35
 
36
+ #code to fix missing columns with na
37
+ #def infer(inputs):
38
+ #data = pd.DataFrame(inputs, columns=headers)
39
+ # Add missing columns with default values (e.g., 0)
40
+ #for col in all_headers:
41
+ #if col not in data.columns:
42
+ #data[col] = 0
43
+ # Ensure the order of columns matches the training data
44
+ #data = data[all_headers]
45
+ #predictions = pipe.predict(data)
46
+ #return pd.DataFrame(predictions, columns=["Depression"])
47
+
48
+
49
  def infer(inputs):
50
  data = pd.DataFrame(inputs, columns=headers)
51
+
52
+ # Replace empty strings with NaN
53
+ data = data.replace('', np.nan)
54
+
55
  # Add missing columns with default values (e.g., 0)
56
  for col in all_headers:
57
  if col not in data.columns:
58
  data[col] = 0
59
+
60
  # Ensure the order of columns matches the training data
61
  data = data[all_headers]
62
+
63
+ # Fill NaN values with default values (e.g., 0)
64
+ data = data.fillna(0)
65
+
66
+ # Convert all data to float
67
+ data = data.astype(float)
68
+
69
  predictions = pipe.predict(data)
70
  return pd.DataFrame(predictions, columns=["Depression"])
71
 
72
 
73
+
74
  gr.Interface(
75
  fn=infer,
76
  inputs=inputs,