File size: 4,739 Bytes
			
			| 12efa10 f07d235 12efa10 eec2226 f07d235 12efa10 00e1096 f07d235 12efa10 f07d235 42d6492 eec2226 12efa10 eec2226 42d6492 12efa10 f07d235 12efa10 b2bab11 12efa10 42d6492 12efa10 42d6492 12efa10 42d6492 12efa10 f07d235 12efa10 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 | from dataclasses import dataclass, make_dataclass
from enum import Enum
import pandas as pd
from src.about import EvalDimensions
def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False
## Leaderboard columns
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["rank", ColumnContent, ColumnContent("Rank", "str", True, False)])
auto_eval_column_dict.append(["model_source", ColumnContent, ColumnContent("Source", "str", True, False)])
auto_eval_column_dict.append(["model_category", ColumnContent, ColumnContent("Category", "str", True, False)])
#auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
#Scores
auto_eval_column_dict.append(["average_score", ColumnContent, ColumnContent("Benchmark Score", "number", True)])
for eval_dim in EvalDimensions:
    auto_eval_column_dict.append([eval_dim.name, ColumnContent, ColumnContent(eval_dim.value.col_name, "number", True)])
# Model information
#auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
#auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
#auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
#auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("License", "str", False)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Popularity (Likes)", "number", False)])
#auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
#auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    revision = ColumnContent("revision", "str", True)
    #private = ColumnContent("private", "bool", True)
    #precision = ColumnContent("precision", "str", True)
    #weight_type = ColumnContent("weight_type", "str", "Original")
    status = ColumnContent("status", "str", True)
## All the model information that we might need
@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = "" # emoji
"""    
class ModelType(Enum):
    PT = ModelDetails(name="pretrained", symbol="🟢")
    FT = ModelDetails(name="fine-tuned", symbol="🔶")
    IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
    RL = ModelDetails(name="RL-tuned", symbol="🟦")
    Unknown = ModelDetails(name="", symbol="?")
    def to_str(self, separator=" "):
        return f"{self.value.symbol}{separator}{self.value.name}"
    @staticmethod
    def from_str(type):
        if "fine-tuned" in type or "🔶" in type:
            return ModelType.FT
        if "pretrained" in type or "🟢" in type:
            return ModelType.PT
        if "RL-tuned" in type or "🟦" in type:
            return ModelType.RL
        if "instruction-tuned" in type or "⭕" in type:
            return ModelType.IFT
        return ModelType.Unknown
class WeightType(Enum):
    Adapter = ModelDetails("Adapter")
    Original = ModelDetails("Original")
    Delta = ModelDetails("Delta")
class Precision(Enum):
    float16 = ModelDetails("float16")
    bfloat16 = ModelDetails("bfloat16")
    Unknown = ModelDetails("?")
    def from_str(precision):
        if precision in ["torch.float16", "float16"]:
            return Precision.float16
        if precision in ["torch.bfloat16", "bfloat16"]:
            return Precision.bfloat16
        return Precision.Unknown
"""
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [t.value.col_name for t in EvalDimensions]
 | 
