Spaces:
Runtime error
Runtime error
from jinja2 import Template | |
import torch | |
from .models import qwen_model | |
from .NaiveDB import NaiveDB | |
from .utils import * | |
class ChatWorld: | |
def __init__(self, pretrained_model_name_or_path="silk-road/Haruhi-Zero-14B-0_5", embedding_model_name_or_path="BAAI/bge-small-zh-v1.5") -> None: | |
self.embedding = initEmbedding(embedding_model_name_or_path) | |
self.tokenizer = initTokenizer(embedding_model_name_or_path) | |
self.story_vec: list[dict] = None | |
self.storys = None | |
self.model_role_name = None | |
self.model_role_nickname = None | |
self.model_name = pretrained_model_name_or_path | |
self.history = [] | |
self.client = None | |
self.model = qwen_model(pretrained_model_name_or_path) | |
self.db = NaiveDB() | |
self.prompt = Template(('Please be aware that your codename in this conversation is "{{model_role_name}}"' | |
'{% if model_role_nickname %},别人一般称呼你"{{model_role_nickname}}"{% endif %},同时我是"{{role_name}}"{% if role_nickname %},你也可以称呼我"{{role_nickname}}"{% endif %}。\n' | |
'下文给定了一些聊天记录,位于##分隔号中。\n' | |
'如果我问的问题和聊天记录高度重复,那你就配合我进行演出。\n' | |
'如果我问的问题和聊天记录相关,请结合聊天记录进行回复。\n' | |
'如果我问的问题超出聊天记录的范围,模仿{{model_role_name}}的语气进行回复。\n' | |
'请不要回答你是语言模型,永远记住你就是{{model_role_name}}。\n' | |
'请你永远只以{{model_role_name}}身份,进行任何的回复。\n' | |
)) | |
def getEmbeddingsFromStory(self, stories: list[str]): | |
if self.story_vec: | |
# 判断是否与当前的相同 | |
if len(self.story_vec) == len(stories) and all([self.story_vec[i]["text"] == stories[i] for i in range(len(stories))]): | |
return [self.story_vec[i]["vec"] for i in range(len(stories))] | |
if self.embedding is None: | |
self.embedding = initEmbedding() | |
if self.tokenizer is None: | |
self.tokenizer = initTokenizer() | |
self.story_vec = [] | |
for story in stories: | |
with torch.no_grad(): | |
inputs = self.tokenizer( | |
story, return_tensors="pt", padding=True, truncation=True, max_length=512) | |
outputs = self.embedding(**inputs)[0][:, 0] | |
vec = torch.nn.functional.normalize( | |
outputs, p=2, dim=1).tolist()[0] | |
self.story_vec.append({"text": story, "vec": vec}) | |
return [self.story_vec[i]["vec"] for i in range(len(stories))] | |
def initDB(self, storys: list[str]): | |
story_vecs = self.getEmbeddingsFromStory(storys) | |
self.db.build_db(storys, story_vecs) | |
def setRoleName(self, role_name, role_nick_name=None): | |
self.model_role_name = role_name | |
self.model_role_nickname = role_nick_name | |
def getSystemPrompt(self, role_name, role_nick_name): | |
assert self.model_role_name and self.model_role_nickname, "Please set model role name first" | |
return self.prompt.render(model_role_name=self.model_role_name, model_role_nickname=self.model_role_nickname, role_name=role_name, role_nickname=role_nick_name) | |
def chat(self, user_role_name: str, text: str, user_role_nick_name: str = None, use_local_model=False): | |
message = [self.getSystemPrompt( | |
user_role_name, user_role_nick_name)] + self.history | |
if use_local_model: | |
response = self.model.get_response(message) | |
else: | |
response = self.client.chat( | |
user_role_name, text, user_role_nick_name) | |
self.history.append({"role": "user", "content": text}) | |
self.history.append({"role": "model", "content": response}) | |
return response | |