Spaces:
Runtime error
Runtime error
import random | |
# elif embedding == 'bge_en': | |
# embed_name = 'bge_en_s15' | |
# elif embedding == 'bge_zh': | |
# embed_name = 'bge_zh_s15' | |
import torch | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
embedshortname2model_name = { | |
"bge_zh":"BAAI/bge-small-zh-v1.5", | |
} | |
embedname2columnname = { | |
"luotuo_openai":"luotuo_openai", | |
"openai":"luotuo_openai", | |
"bge_zh":"bge_zh_s15", | |
"bge_en":"bge_en_s15", | |
"bce":"bce_base", | |
} | |
# 这是用来调试的foo embedding | |
def foo_embedding( text ): | |
# whatever text input , output a 2 dim 0-1 random vects | |
return [random.random(), random.random()] | |
# TODO: add bge-zh-small(or family) BCE and openai embedding here 米唯实 | |
# ======== add bge_zh mmodel | |
# by Weishi MI | |
def foo_bge_zh_15( text ): | |
dim = 512 | |
model_name = "BAAI/bge-small-zh-v1.5" | |
if isinstance(text, str): | |
text_list = [text] | |
else: | |
get_general_embeddings_safe(text, model_name) | |
global _model_pool | |
global _tokenizer_pool | |
if model_name not in _model_pool: | |
from transformers import AutoTokenizer, AutoModel | |
_tokenizer_pool[model_name] = AutoTokenizer.from_pretrained(model_name) | |
_model_pool[model_name] = AutoModel.from_pretrained(model_name) | |
_model_pool[model_name].eval() | |
# Tokenize sentences | |
encoded_input = _tokenizer_pool[model_name](text_list, padding=True, truncation=True, return_tensors='pt', max_length = 512) | |
# Compute token embeddings | |
with torch.no_grad(): | |
model_output = _model_pool[model_name](**encoded_input) | |
# Perform pooling. In this case, cls pooling. | |
sentence_embeddings = model_output[0][:, 0] | |
# normalize embeddings | |
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1) | |
return sentence_embeddings.cpu().tolist()[0] | |
# return [random.random() for _ in range(dim)] | |
def foo_bce( text ): | |
from transformers import AutoModel, AutoTokenizer | |
if isinstance(text, str): | |
text_list = [text] | |
# init model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained('maidalun1020/bce-embedding-base_v1') | |
model = AutoModel.from_pretrained('maidalun1020/bce-embedding-base_v1') | |
model.to(device) | |
# get inputs | |
inputs = tokenizer(text_list, padding=True, truncation=True, max_length=512, return_tensors="pt") | |
inputs_on_device = {k: v.to(self.device) for k, v in inputs.items()} | |
# get embeddings | |
outputs = model(**inputs_on_device, return_dict=True) | |
embeddings = outputs.last_hidden_state[:, 0] # cls pooler | |
embeddings = embeddings / embeddings.norm(dim=1, keepdim=True) # normalize | |
return embeddings | |
def download_models(): | |
print("正在下载Luotuo-Bert") | |
# Import our models. The package will take care of downloading the models automatically | |
model_args = Namespace(do_mlm=None, pooler_type="cls", temp=0.05, mlp_only_train=False, | |
init_embeddings_model=None) | |
model = AutoModel.from_pretrained("silk-road/luotuo-bert-medium", trust_remote_code=True, model_args=model_args).to( | |
device) | |
print("Luotuo-Bert下载完毕") | |
return model | |
def get_luotuo_model(): | |
global _luotuo_model | |
if _luotuo_model is None: | |
_luotuo_model = download_models() | |
return _luotuo_model | |
def luotuo_embedding(model, texts): | |
# Tokenize the texts_source | |
tokenizer = AutoTokenizer.from_pretrained("silk-road/luotuo-bert-medium") | |
inputs = tokenizer(texts, padding=True, truncation=False, return_tensors="pt") | |
inputs = inputs.to(device) | |
# Extract the embeddings | |
# Get the embeddings | |
with torch.no_grad(): | |
embeddings = model(**inputs, output_hidden_states=True, return_dict=True, sent_emb=True).pooler_output | |
return embeddings | |
def luotuo_en_embedding( texts ): | |
# this function implemented by Cheng | |
global _luotuo_model_en | |
global _luotuo_en_tokenizer | |
if _luotuo_model_en is None: | |
_luotuo_en_tokenizer = AutoTokenizer.from_pretrained("silk-road/luotuo-bert-en") | |
_luotuo_model_en = AutoModel.from_pretrained("silk-road/luotuo-bert-en").to(device) | |
if _luotuo_en_tokenizer is None: | |
_luotuo_en_tokenizer = AutoTokenizer.from_pretrained("silk-road/luotuo-bert-en") | |
inputs = _luotuo_en_tokenizer(texts, padding=True, truncation=False, return_tensors="pt") | |
inputs = inputs.to(device) | |
with torch.no_grad(): | |
embeddings = _luotuo_model_en(**inputs, output_hidden_states=True, return_dict=True, sent_emb=True).pooler_output | |
return embeddings | |
def get_embedding_for_chinese(model, texts): | |
model = model.to(device) | |
# str or strList | |
texts = texts if isinstance(texts, list) else [texts] | |
# 截断 | |
for i in range(len(texts)): | |
if len(texts[i]) > 510: | |
texts[i] = texts[i][:510] | |
if len(texts) >= 64: | |
embeddings = [] | |
chunk_size = 64 | |
for i in range(0, len(texts), chunk_size): | |
embeddings.append(luotuo_embedding(model, texts[i: i + chunk_size])) | |
return torch.cat(embeddings, dim=0) | |
else: | |
return luotuo_embedding(model, texts) | |
def is_chinese_or_english(text): | |
# no longer use online openai api | |
return "chinese" | |
text = list(text) | |
is_chinese, is_english = 0, 0 | |
for char in text: | |
# 判断字符的Unicode值是否在中文字符的Unicode范围内 | |
if '\u4e00' <= char <= '\u9fa5': | |
is_chinese += 4 | |
# 判断字符是否为英文字符(包括大小写字母和常见标点符号) | |
elif ('\u0041' <= char <= '\u005a') or ('\u0061' <= char <= '\u007a'): | |
is_english += 1 | |
if is_chinese >= is_english: | |
return "chinese" | |
else: | |
return "english" | |
def get_embedding_openai(text, model="text-embedding-ada-002"): | |
text = text.replace("\n", " ") | |
return client.embeddings.create(input = [text], model=model).data[0].embedding | |
def get_embedding_for_english(text, model="text-embedding-ada-002"): | |
text = text.replace("\n", " ") | |
return client.embeddings.create(input = [text], model=model).data[0].embedding | |
import os | |
def foo_openai( text ): | |
# dim = 1536 | |
openai_key = os.environ.get("OPENAI_API_KEY") | |
if isinstance(texts, list): | |
index = random.randint(0, len(texts) - 1) | |
if openai_key is None or is_chinese_or_english(texts[index]) == "chinese": | |
return [embed.cpu().tolist() for embed in get_embedding_for_chinese(get_luotuo_model(), texts)] | |
else: | |
return [get_embedding_for_english(text) for text in texts] | |
else: | |
if openai_key is None or is_chinese_or_english(texts) == "chinese": | |
return get_embedding_for_chinese(get_luotuo_model(), texts)[0].cpu().tolist() | |
else: | |
return get_embedding_for_english(texts) | |
### BGE family | |
# ======== add bge_zh mmodel | |
# by Cheng Li | |
# 这一次我们试图一次性去适配更多的模型 | |
import torch | |
_model_pool = {} | |
_tokenizer_pool = {} | |
# BAAI/bge-small-zh-v1.5 | |
def get_general_embeddings( sentences , model_name = "BAAI/bge-small-zh-v1.5" ): | |
global _model_pool | |
global _tokenizer_pool | |
if model_name not in _model_pool: | |
from transformers import AutoTokenizer, AutoModel | |
_tokenizer_pool[model_name] = AutoTokenizer.from_pretrained(model_name) | |
_model_pool[model_name] = AutoModel.from_pretrained(model_name).to(device) | |
_model_pool[model_name].eval() | |
# Tokenize sentences | |
encoded_input = _tokenizer_pool[model_name](sentences, padding=True, truncation=True, return_tensors='pt', max_length = 512).to(device) | |
# Compute token embeddings | |
with torch.no_grad(): | |
model_output = _model_pool[model_name](**encoded_input) | |
# Perform pooling. In this case, cls pooling. | |
sentence_embeddings = model_output[0][:, 0] | |
# normalize embeddings | |
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1) | |
return sentence_embeddings.cpu().tolist() | |
def get_general_embedding( text_or_texts , model_name = "BAAI/bge-small-zh-v1.5" ): | |
if isinstance(text_or_texts, str): | |
return get_general_embeddings([text_or_texts], model_name)[0] | |
else: | |
return get_general_embeddings_safe(text_or_texts, model_name) | |
general_batch_size = 16 | |
import math | |
def get_general_embeddings_safe(sentences, model_name = "BAAI/bge-small-zh-v1.5"): | |
embeddings = [] | |
num_batches = math.ceil(len(sentences) / general_batch_size) | |
from tqdm import tqdm | |
for i in tqdm( range(num_batches) ): | |
# print("run bge with batch ", i) | |
start_index = i * general_batch_size | |
end_index = min(len(sentences), start_index + general_batch_size) | |
batch = sentences[start_index:end_index] | |
embs = get_general_embeddings(batch, model_name) | |
embeddings.extend(embs) | |
return embeddings | |
def get_bge_zh_embedding( text_or_texts ): | |
return get_general_embedding(text_or_texts, "BAAI/bge-small-zh-v1.5") | |