silk-road's picture
Upload 15 files
aef3deb verified
import random
# elif embedding == 'bge_en':
# embed_name = 'bge_en_s15'
# elif embedding == 'bge_zh':
# embed_name = 'bge_zh_s15'
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
embedshortname2model_name = {
"bge_zh":"BAAI/bge-small-zh-v1.5",
}
embedname2columnname = {
"luotuo_openai":"luotuo_openai",
"openai":"luotuo_openai",
"bge_zh":"bge_zh_s15",
"bge_en":"bge_en_s15",
"bce":"bce_base",
}
# 这是用来调试的foo embedding
def foo_embedding( text ):
# whatever text input , output a 2 dim 0-1 random vects
return [random.random(), random.random()]
# TODO: add bge-zh-small(or family) BCE and openai embedding here 米唯实
# ======== add bge_zh mmodel
# by Weishi MI
def foo_bge_zh_15( text ):
dim = 512
model_name = "BAAI/bge-small-zh-v1.5"
if isinstance(text, str):
text_list = [text]
else:
get_general_embeddings_safe(text, model_name)
global _model_pool
global _tokenizer_pool
if model_name not in _model_pool:
from transformers import AutoTokenizer, AutoModel
_tokenizer_pool[model_name] = AutoTokenizer.from_pretrained(model_name)
_model_pool[model_name] = AutoModel.from_pretrained(model_name)
_model_pool[model_name].eval()
# Tokenize sentences
encoded_input = _tokenizer_pool[model_name](text_list, padding=True, truncation=True, return_tensors='pt', max_length = 512)
# Compute token embeddings
with torch.no_grad():
model_output = _model_pool[model_name](**encoded_input)
# Perform pooling. In this case, cls pooling.
sentence_embeddings = model_output[0][:, 0]
# normalize embeddings
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
return sentence_embeddings.cpu().tolist()[0]
# return [random.random() for _ in range(dim)]
def foo_bce( text ):
from transformers import AutoModel, AutoTokenizer
if isinstance(text, str):
text_list = [text]
# init model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('maidalun1020/bce-embedding-base_v1')
model = AutoModel.from_pretrained('maidalun1020/bce-embedding-base_v1')
model.to(device)
# get inputs
inputs = tokenizer(text_list, padding=True, truncation=True, max_length=512, return_tensors="pt")
inputs_on_device = {k: v.to(self.device) for k, v in inputs.items()}
# get embeddings
outputs = model(**inputs_on_device, return_dict=True)
embeddings = outputs.last_hidden_state[:, 0] # cls pooler
embeddings = embeddings / embeddings.norm(dim=1, keepdim=True) # normalize
return embeddings
def download_models():
print("正在下载Luotuo-Bert")
# Import our models. The package will take care of downloading the models automatically
model_args = Namespace(do_mlm=None, pooler_type="cls", temp=0.05, mlp_only_train=False,
init_embeddings_model=None)
model = AutoModel.from_pretrained("silk-road/luotuo-bert-medium", trust_remote_code=True, model_args=model_args).to(
device)
print("Luotuo-Bert下载完毕")
return model
def get_luotuo_model():
global _luotuo_model
if _luotuo_model is None:
_luotuo_model = download_models()
return _luotuo_model
def luotuo_embedding(model, texts):
# Tokenize the texts_source
tokenizer = AutoTokenizer.from_pretrained("silk-road/luotuo-bert-medium")
inputs = tokenizer(texts, padding=True, truncation=False, return_tensors="pt")
inputs = inputs.to(device)
# Extract the embeddings
# Get the embeddings
with torch.no_grad():
embeddings = model(**inputs, output_hidden_states=True, return_dict=True, sent_emb=True).pooler_output
return embeddings
def luotuo_en_embedding( texts ):
# this function implemented by Cheng
global _luotuo_model_en
global _luotuo_en_tokenizer
if _luotuo_model_en is None:
_luotuo_en_tokenizer = AutoTokenizer.from_pretrained("silk-road/luotuo-bert-en")
_luotuo_model_en = AutoModel.from_pretrained("silk-road/luotuo-bert-en").to(device)
if _luotuo_en_tokenizer is None:
_luotuo_en_tokenizer = AutoTokenizer.from_pretrained("silk-road/luotuo-bert-en")
inputs = _luotuo_en_tokenizer(texts, padding=True, truncation=False, return_tensors="pt")
inputs = inputs.to(device)
with torch.no_grad():
embeddings = _luotuo_model_en(**inputs, output_hidden_states=True, return_dict=True, sent_emb=True).pooler_output
return embeddings
def get_embedding_for_chinese(model, texts):
model = model.to(device)
# str or strList
texts = texts if isinstance(texts, list) else [texts]
# 截断
for i in range(len(texts)):
if len(texts[i]) > 510:
texts[i] = texts[i][:510]
if len(texts) >= 64:
embeddings = []
chunk_size = 64
for i in range(0, len(texts), chunk_size):
embeddings.append(luotuo_embedding(model, texts[i: i + chunk_size]))
return torch.cat(embeddings, dim=0)
else:
return luotuo_embedding(model, texts)
def is_chinese_or_english(text):
# no longer use online openai api
return "chinese"
text = list(text)
is_chinese, is_english = 0, 0
for char in text:
# 判断字符的Unicode值是否在中文字符的Unicode范围内
if '\u4e00' <= char <= '\u9fa5':
is_chinese += 4
# 判断字符是否为英文字符(包括大小写字母和常见标点符号)
elif ('\u0041' <= char <= '\u005a') or ('\u0061' <= char <= '\u007a'):
is_english += 1
if is_chinese >= is_english:
return "chinese"
else:
return "english"
def get_embedding_openai(text, model="text-embedding-ada-002"):
text = text.replace("\n", " ")
return client.embeddings.create(input = [text], model=model).data[0].embedding
def get_embedding_for_english(text, model="text-embedding-ada-002"):
text = text.replace("\n", " ")
return client.embeddings.create(input = [text], model=model).data[0].embedding
import os
def foo_openai( text ):
# dim = 1536
openai_key = os.environ.get("OPENAI_API_KEY")
if isinstance(texts, list):
index = random.randint(0, len(texts) - 1)
if openai_key is None or is_chinese_or_english(texts[index]) == "chinese":
return [embed.cpu().tolist() for embed in get_embedding_for_chinese(get_luotuo_model(), texts)]
else:
return [get_embedding_for_english(text) for text in texts]
else:
if openai_key is None or is_chinese_or_english(texts) == "chinese":
return get_embedding_for_chinese(get_luotuo_model(), texts)[0].cpu().tolist()
else:
return get_embedding_for_english(texts)
### BGE family
# ======== add bge_zh mmodel
# by Cheng Li
# 这一次我们试图一次性去适配更多的模型
import torch
_model_pool = {}
_tokenizer_pool = {}
# BAAI/bge-small-zh-v1.5
def get_general_embeddings( sentences , model_name = "BAAI/bge-small-zh-v1.5" ):
global _model_pool
global _tokenizer_pool
if model_name not in _model_pool:
from transformers import AutoTokenizer, AutoModel
_tokenizer_pool[model_name] = AutoTokenizer.from_pretrained(model_name)
_model_pool[model_name] = AutoModel.from_pretrained(model_name).to(device)
_model_pool[model_name].eval()
# Tokenize sentences
encoded_input = _tokenizer_pool[model_name](sentences, padding=True, truncation=True, return_tensors='pt', max_length = 512).to(device)
# Compute token embeddings
with torch.no_grad():
model_output = _model_pool[model_name](**encoded_input)
# Perform pooling. In this case, cls pooling.
sentence_embeddings = model_output[0][:, 0]
# normalize embeddings
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
return sentence_embeddings.cpu().tolist()
def get_general_embedding( text_or_texts , model_name = "BAAI/bge-small-zh-v1.5" ):
if isinstance(text_or_texts, str):
return get_general_embeddings([text_or_texts], model_name)[0]
else:
return get_general_embeddings_safe(text_or_texts, model_name)
general_batch_size = 16
import math
def get_general_embeddings_safe(sentences, model_name = "BAAI/bge-small-zh-v1.5"):
embeddings = []
num_batches = math.ceil(len(sentences) / general_batch_size)
from tqdm import tqdm
for i in tqdm( range(num_batches) ):
# print("run bge with batch ", i)
start_index = i * general_batch_size
end_index = min(len(sentences), start_index + general_batch_size)
batch = sentences[start_index:end_index]
embs = get_general_embeddings(batch, model_name)
embeddings.extend(embs)
return embeddings
def get_bge_zh_embedding( text_or_texts ):
return get_general_embedding(text_or_texts, "BAAI/bge-small-zh-v1.5")