File size: 6,009 Bytes
2edd118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from argparse import Namespace

import openai
from transformers import AutoModel, AutoTokenizer
import torch
import random

import tiktoken
import re


device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

_luotuo_model = None

_luotuo_model_en = None
_luotuo_en_tokenizer = None

_enc_model = None

def tiktokenizer( text ):
    global _enc_model

    if _enc_model is None:
        _enc_model = tiktoken.get_encoding("cl100k_base")

    return len(_enc_model.encode(text))
    
def response_postprocess(text,dialogue_bra_token = '「',dialogue_ket_token = '」'):
    lines = text.split('\n')
    new_lines = ""

    first_name = None

    for line in lines:
        line = line.strip(" ")
        match = re.match(r'^(.*?)[::]' + dialogue_bra_token + r"(.*?)" + dialogue_ket_token + r"$", line)

        
        if match:
            curr_name = match.group(1)
            # print(curr_name)
            if first_name is None:
                first_name = curr_name
                new_lines += (match.group(2))
            else:
                if curr_name != first_name:
                    return first_name + ":" + dialogue_bra_token +  new_lines + dialogue_ket_token
                else:
                    new_lines += (match.group(2))
            
        else:
            if first_name == None:
                return text
            else:
                return first_name + ":" + dialogue_bra_token +  new_lines + dialogue_ket_token
    return first_name + ":" + dialogue_bra_token + new_lines + dialogue_ket_token

def download_models():
    print("正在下载Luotuo-Bert")
    # Import our models. The package will take care of downloading the models automatically
    model_args = Namespace(do_mlm=None, pooler_type="cls", temp=0.05, mlp_only_train=False,
                           init_embeddings_model=None)
    model = AutoModel.from_pretrained("silk-road/luotuo-bert-medium", trust_remote_code=True, model_args=model_args).to(
        device)
    print("Luotuo-Bert下载完毕")
    return model

def get_luotuo_model():
    global _luotuo_model
    if _luotuo_model is None:
        _luotuo_model = download_models()
    return _luotuo_model


def luotuo_embedding(model, texts):
    # Tokenize the texts_source
    tokenizer = AutoTokenizer.from_pretrained("silk-road/luotuo-bert-medium")
    inputs = tokenizer(texts, padding=True, truncation=False, return_tensors="pt")
    inputs = inputs.to(device)
    # Extract the embeddings
    # Get the embeddings
    with torch.no_grad():
        embeddings = model(**inputs, output_hidden_states=True, return_dict=True, sent_emb=True).pooler_output
    return embeddings

def luotuo_en_embedding( texts ):
    # this function implemented by Cheng
    global _luotuo_model_en
    global _luotuo_en_tokenizer

    if _luotuo_model_en is None:
        _luotuo_en_tokenizer = AutoTokenizer.from_pretrained("silk-road/luotuo-bert-en")
        _luotuo_model_en = AutoModel.from_pretrained("silk-road/luotuo-bert-en").to(device)

    if _luotuo_en_tokenizer is None:
        _luotuo_en_tokenizer = AutoTokenizer.from_pretrained("silk-road/luotuo-bert-en")

    inputs = _luotuo_en_tokenizer(texts, padding=True, truncation=False, return_tensors="pt")
    inputs = inputs.to(device)

    with torch.no_grad():
        embeddings = _luotuo_model_en(**inputs, output_hidden_states=True, return_dict=True, sent_emb=True).pooler_output
        
    return embeddings


def get_embedding_for_chinese(model, texts):
    model = model.to(device)
    # str or strList
    texts = texts if isinstance(texts, list) else [texts]
    # 截断
    for i in range(len(texts)):
        if len(texts[i]) > 510:
            texts[i] = texts[i][:510]
    if len(texts) >= 64:
        embeddings = []
        chunk_size = 64
        for i in range(0, len(texts), chunk_size):
            embeddings.append(luotuo_embedding(model, texts[i: i + chunk_size]))
        return torch.cat(embeddings, dim=0)
    else:
        return luotuo_embedding(model, texts)


def is_chinese_or_english(text):
    text = list(text)
    is_chinese, is_english = 0, 0

    for char in text:
        # 判断字符的Unicode值是否在中文字符的Unicode范围内
        if '\u4e00' <= char <= '\u9fa5':
            is_chinese += 4
        # 判断字符是否为英文字符(包括大小写字母和常见标点符号)
        elif ('\u0041' <= char <= '\u005a') or ('\u0061' <= char <= '\u007a'):
            is_english += 1
    if is_chinese >= is_english:
        return "chinese"
    else:
        return "english"


def get_embedding_for_english(text, model="text-embedding-ada-002"):
    text = text.replace("\n", " ")
    return openai.Embedding.create(input=[text], model=model)['data'][0]['embedding']

import os

def luotuo_openai_embedding(texts, is_chinese= None ):
    """
        when input is chinese, use luotuo_embedding
        when input is english, use openai_embedding
        texts can be a list or a string
        when texts is a list, return a list of embeddings, using batch inference
        when texts is a string, return a single embedding
    """

    openai_key = os.environ.get("OPENAI_API_KEY")

    if isinstance(texts, list):
        index = random.randint(0, len(texts) - 1)
        if openai_key is None or is_chinese_or_english(texts[index]) == "chinese":
            return [embed.cpu().tolist() for embed in get_embedding_for_chinese(get_luotuo_model(), texts)]
        else:
            return [get_embedding_for_english(text) for text in texts]
    else:
        if openai_key is None or is_chinese_or_english(texts) == "chinese":
            return get_embedding_for_chinese(get_luotuo_model(), texts)[0].cpu().tolist()
        else:
            return get_embedding_for_english(texts)


# compute cosine similarity between two vector
def get_cosine_similarity( v1, v2):
    v1 = torch.tensor(v1).to(device)
    v2 = torch.tensor(v2).to(device)
    return torch.cosine_similarity(v1, v2, dim=0).item()