silk-road's picture
Update app.py
b033db1 verified
raw
history blame
11.9 kB
import gradio as gr
import os
import httpx
import openai
from openai import OpenAI
from openai import AsyncOpenAI
from datasets import load_dataset
dataset = load_dataset("silk-road/50-Chinese-Novel-Characters")
novel_list = []
novel2roles = {}
role2datas = {}
from tqdm import tqdm
for data in tqdm(dataset['train']):
novel = data['book']
role = data['role']
if novel not in novel_list:
novel_list.append(novel)
if novel not in novel2roles:
novel2roles[novel] = []
if role not in novel2roles[novel]:
novel2roles[novel].append(role)
role_tuple = (novel, role)
if role_tuple not in role2datas:
role2datas[role_tuple] = []
role2datas[role_tuple].append(data)
from ChatHaruhi.utils import base64_to_float_array
from tqdm import tqdm
for novel in tqdm(novel_list):
for role in novel2roles[novel]:
for data in role2datas[(novel, role)]:
data["vec"] = base64_to_float_array(data["bge_zh_s15"])
def conv2story( role, conversations ):
lines = [conv["value"] if conv["from"] == "human" else role + ": " + conv["value"] for conv in conversations]
return "\n".join(lines)
for novel in tqdm(novel_list):
for role in novel2roles[novel]:
for data in role2datas[(novel, role)]:
data["story"] = conv2story( role, data["conversations"] )
from ChatHaruhi import ChatHaruhi
from ChatHaruhi.response_openai import get_response as get_response_openai
from ChatHaruhi.response_zhipu import get_response as get_response_zhipu
from ChatHaruhi.response_erniebot import get_response as get_response_erniebot
from ChatHaruhi.response_spark import get_response as get_response_spark
get_response = get_response_zhipu
narrators = ["叙述者", "旁白","文章作者","作者","Narrator","narrator"]
def package_persona( role_name, world_name ):
if role_name in narrators:
return package_persona_for_narrator( role_name, world_name )
return f"""I want you to act like {role_name} from {world_name}.
If others‘ questions are related with the novel, please try to reuse the original lines from the novel.
I want you to respond and answer like {role_name} using the tone, manner and vocabulary {role_name} would use."""
def package_persona_for_narrator( role_name, world_name ):
return f"""I want you to act like narrator {role_name} from {world_name}.
当角色行动之后,继续交代和推进新的剧情."""
role_tuple2chatbot = {}
def initialize_chatbot( novel, role ):
global role_tuple2chatbot
if (novel, role) not in role_tuple2chatbot:
persona = package_persona( role, novel )
persona += "\n{{RAG对话}}\n{{RAG对话}}\n{{RAG对话}}\n"
stories = [data["story"] for data in role2datas[(novel, role)] ]
vecs = [data["vec"] for data in role2datas[(novel, role)] ]
chatbot = ChatHaruhi( role_name = role, persona = persona , stories = stories, story_vecs= vecs,\
llm = get_response)
chatbot.verbose = False
role_tuple2chatbot[(novel, role)] = chatbot
from tqdm import tqdm
for novel in tqdm(novel_list):
for role in novel2roles[novel]:
initialize_chatbot( novel, role )
readme_text = """# 使用说明
选择小说角色
如果你有什么附加信息,添加到附加信息里面就可以
比如"韩立会炫耀自己刚刚学会了Python"
然后就可以开始聊天了
因为这些角色还没有增加Greeting信息,所以之后再开发个随机乱聊功能
# 开发细节
- 采用ChatHaruhi3.0的接口进行prompting
- 这里的数据是用一个7B的tuned qwen模型进行抽取的
- 想看数据可以去看第三个tab
- 抽取模型用了40k左右的GLM蒸馏数据
- 抽取模型是腾讯大哥BPSK训练的
# 总结人物性格
第三个Tab里面,可以显示一个prompt总结人物的性格
复制到openai或者GLM或者Claude进行人物总结
# 这些小说数据从HaruhiZero 0.4模型开始,被加入训练
openai太慢了 今天试试GLM的
不过当前demo是openai的
"""
# from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM
# tokenizer = AutoTokenizer.from_pretrained("silk-road/Haruhi-Zero-1_8B", trust_remote_code=True)
# model = AutoModelForCausalLM.from_pretrained("silk-road/Haruhi-Zero-1_8B", device_map="auto", trust_remote_code=True)
# model = model.eval()
# def get_response_qwen18(message):
# from ChatHaruhi.utils import normalize2uaua
# message_ua = normalize2uaua(message, if_replace_system = True)
# import json
# message_tuples = []
# for i in range(0, len(message_ua)-1, 2):
# message_tuple = (message_ua[i]["content"], message_ua[i+1]["content"])
# message_tuples.append(message_tuple)
# response, _ = model.chat(tokenizer, message_ua[-1]["content"], history=message_tuples)
# return response
from ChatHaruhi.response_openai import get_response, async_get_response
import gradio as gr
def get_role_list( novel ):
new_list = novel2roles[novel]
new_value = new_list[0]
return gr.update(choices = new_list, value = new_value)
# save_log = "/content/output.txt"
def get_chatbot( novel, role ):
if (novel, role) not in role_tuple2chatbot:
initialize_chatbot( novel, role )
return role_tuple2chatbot[(novel, role)]
import json
def random_chat_callback( novel, role, chat_history):
datas = role2datas[(novel, role)]
reesponse_set = set()
for chat_tuple in chat_history:
if chat_tuple[1] is not None:
reesponse_set.add(chat_tuple[1])
for _ in range(5):
random_data = random.choice(datas)
convs = random_data["conversations"]
n = len(convs)
index = [x for x in range(0,n,2)]
for i in index:
query = convs[i]['value']
response = convs[i+1]['value']
if response not in reesponse_set:
chat_history.append( (query, response) )
return chat_history
return chat_history
async def submit_chat( novel, role, user_name, user_text, chat_history, persona_addition_info,model_sel):
if len(user_text) > 400:
user_text = user_text[:400]
if_user_in_text = True
chatbot = get_chatbot( novel, role )
chatbot.persona = initialize_persona( novel, role, persona_addition_info)
# chatbot.llm_async = async_get_response
if model_sel == "openai":
chatbot.llm = get_response_openai
elif model_sel == "Zhipu":
chatbot.llm = get_response_zhipu
elif model_sel == "spark":
chatbot.llm = get_response_spark
else:
chatbot.llm = get_response_erniebot
history = []
for chat_tuple in chat_history:
if chat_tuple[0] is not None:
history.append( {"speaker":"{{user}}","content":chat_tuple[0]} )
if chat_tuple[1] is not None:
history.append( {"speaker":"{{role}}","content":chat_tuple[1]} )
chatbot.history = history
input_text = user_text
if if_user_in_text:
input_text = user_name + " : " + user_text
response = chatbot.chat(user = "", text = input_text )
# response = await chatbot.async_chat(user = "", text = input_text )
else:
response = chatbot.chat(user = user_name, text = input_text)
# response = await chatbot.async_chat(user = user_name, text = input_text)
chat_history.append( (input_text, response) )
print_data = {"novel":novel, "role":role, "user_text":input_text, "response":response}
print(json.dumps(print_data, ensure_ascii=False))
# with open(save_log, "a",encoding = "utf-8") as f:
# f.write(json.dumps(print_data, ensure_ascii=False) + "\n")
return chat_history
def initialize_persona( novel, role, persona_addition_info):
whole_persona = package_persona( role, novel )
whole_persona += "\n" + persona_addition_info
whole_persona += "\n{{RAG对话}}\n{{RAG对话}}\n{{RAG对话}}\n"
return whole_persona
def clean_history( ):
return []
def clean_input():
return ""
import random
def generate_summarize_prompt( novel, role_name ):
whole_prompt = f'''
你在分析小说{novel}中的角色{role_name}
结合小说{novel}中的内容,以及下文中角色{role_name}的对话
判断{role_name}的人物设定、人物特点以及语言风格
{role_name}的对话:
'''
stories = [data["story"] for data in role2datas[(novel, role_name)] ]
sample_n = 5
sample_stories = random.sample(stories, sample_n)
for story in sample_stories:
whole_prompt += story + "\n\n"
return whole_prompt.strip()
with gr.Blocks() as demo:
gr.Markdown("""# 50本小说的人物测试
这个interface由李鲁鲁实现,主要是用来看语料的
增加了随机聊天,支持GLM,openai切换
米唯实接入了Spark,文心一言并布置于huggingface上""")
with gr.Tab("聊天"):
with gr.Row():
novel_sel = gr.Dropdown( novel_list, label = "小说", value = "悟空传" , interactive = True)
role_sel = gr.Dropdown( novel2roles[novel_sel.value], label = "角色", value = "孙悟空", interactive = True )
with gr.Row():
chat_history = gr.Chatbot(height = 600)
with gr.Row():
user_name = gr.Textbox(label="user_name", scale = 1, value = "鲁鲁", interactive = True)
user_text = gr.Textbox(label="user_text", scale = 20)
submit = gr.Button("submit", scale = 1)
with gr.Row():
random_chat = gr.Button("随机聊天", scale = 1)
clean_message = gr.Button("清空聊天", scale = 1)
with gr.Row():
persona_addition_info = gr.TextArea( label = "额外人物设定", value = "", interactive = True )
with gr.Row():
update_persona = gr.Button("补充人物设定到prompt", scale = 1)
model_sel = gr.Radio(["Zhipu","openai","spark","erniebot"], interactive = True, scale = 5, value = "Zhipu", label = "模型选择")
with gr.Row():
whole_persona = gr.TextArea( label = "完整的system prompt", value = "", interactive = False )
novel_sel.change(fn = get_role_list, inputs = [novel_sel], outputs = [role_sel]).then(fn = initialize_persona, inputs = [novel_sel, role_sel, persona_addition_info], outputs = [whole_persona])
role_sel.change(fn = initialize_persona, inputs = [novel_sel, role_sel, persona_addition_info], outputs = [whole_persona])
update_persona.click(fn = initialize_persona, inputs = [novel_sel, role_sel, persona_addition_info], outputs = [whole_persona])
random_chat.click(fn = random_chat_callback, inputs = [novel_sel, role_sel, chat_history], outputs = [chat_history])
user_text.submit(fn = submit_chat, inputs = [novel_sel, role_sel, user_name, user_text, chat_history, persona_addition_info,model_sel], outputs = [chat_history]).then(fn = clean_input, inputs = [], outputs = [user_text])
submit.click(fn = submit_chat, inputs = [novel_sel, role_sel, user_name, user_text, chat_history, persona_addition_info,model_sel], outputs = [chat_history]).then(fn = clean_input, inputs = [], outputs = [user_text])
clean_message.click(fn = clean_history, inputs = [], outputs = [chat_history])
with gr.Tab("README"):
gr.Markdown(readme_text)
with gr.Tab("辅助人物总结"):
with gr.Row():
generate_prompt = gr.Button("生成人物总结prompt", scale = 1)
with gr.Row():
whole_prompt = gr.TextArea( label = "复制这个prompt到Openai或者GLM或者Claude进行总结", value = "", interactive = False )
generate_prompt.click(fn = generate_summarize_prompt, inputs = [novel_sel, role_sel], outputs = [whole_prompt])
demo.launch(share=True, debug = True)