Spaces:
Runtime error
Runtime error
File size: 13,409 Bytes
fee0ada |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
from argparse import Namespace
from openai import OpenAI
# client = OpenAI(api_key=<YOUR OPENAI API KEY>)
from transformers import AutoModel, AutoTokenizer
import torch
import random
import tiktoken
import re
import numpy as np
import base64
import struct
import os
import tqdm
import requests
def get_access_token():
API_KEY = os.getenv("StoryAudit_API_AK")
SECRET_KEY = os.getenv("StoryAudit_API_SK")
"""
使用 AK,SK 生成鉴权签名(Access Token)
:return: access_token,或是None(如果错误)
"""
url = "https://aip.baidubce.com/oauth/2.0/token"
params = {"grant_type": "client_credentials", "client_id": API_KEY, "client_secret": SECRET_KEY}
return str(requests.post(url, params=params).json().get("access_token"))
'''
文本审核接口
'''
def text_censor(text):
request_url = "https://aip.baidubce.com/rest/2.0/solution/v1/text_censor/v2/user_defined"
params = {"text":text}
access_token = get_access_token()
request_url = request_url + "?access_token=" + access_token
headers = {'content-type': 'application/x-www-form-urlencoded'}
response = requests.post(request_url, data=params, headers=headers)
return response.json()["conclusion"] == "合规"
def package_role( system_prompt, texts_path , embedding ):
datas = []
# 暂时只有一种embedding 'luotuo_openai'
embed_name = 'luotuo_openai'
datas.append({ 'text':system_prompt , embed_name:'system_prompt'})
datas.append({ 'text':'Reserve Config Setting Here' , embed_name:'config'})
# debug_count = 3
# for file in os.listdir(texts_path):
files = os.listdir(texts_path)
for i in tqdm.tqdm(range(len(files))):
file = files[i]
# if file name end with txt
if file.endswith(".txt"):
file_path = os.path.join(texts_path, file)
with open(file_path, 'r', encoding='utf-8') as f:
current_str = f.read()
current_vec = embedding(current_str)
encode_vec = float_array_to_base64(current_vec)
datas.append({ 'text':current_str , embed_name:encode_vec})
# debug_count -= 1
# if debug_count == 0:
# break
return datas
import struct
def string_to_base64(text):
byte_array = b''
for char in text:
num_bytes = char.encode('utf-8')
byte_array += num_bytes
base64_data = base64.b64encode(byte_array)
return base64_data.decode('utf-8')
def base64_to_string(base64_data):
byte_array = base64.b64decode(base64_data)
text = byte_array.decode('utf-8')
return text
def float_array_to_base64(float_arr):
byte_array = b''
for f in float_arr:
# 将每个浮点数打包为4字节
num_bytes = struct.pack('!f', f)
byte_array += num_bytes
# 将字节数组进行base64编码
base64_data = base64.b64encode(byte_array)
return base64_data.decode('utf-8')
def base64_to_float_array(base64_data):
byte_array = base64.b64decode(base64_data)
float_array = []
# 每 4 个字节解析为一个浮点数
for i in range(0, len(byte_array), 4):
num = struct.unpack('!f', byte_array[i:i+4])[0]
float_array.append(num)
return float_array
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
_luotuo_model = None
_luotuo_model_en = None
_luotuo_en_tokenizer = None
_enc_model = None
# ======== add bge_zh mmodel
# by Cheng Li
# 这一次我们试图一次性去适配更多的模型
_model_pool = {}
_tokenizer_pool = {}
# BAAI/bge-small-zh-v1.5
def get_general_embeddings( sentences , model_name = "BAAI/bge-small-zh-v1.5" ):
global _model_pool
global _tokenizer_pool
if model_name not in _model_pool:
from transformers import AutoTokenizer, AutoModel
_tokenizer_pool[model_name] = AutoTokenizer.from_pretrained(model_name)
_model_pool[model_name] = AutoModel.from_pretrained(model_name)
_model_pool[model_name].eval()
# Tokenize sentences
encoded_input = _tokenizer_pool[model_name](sentences, padding=True, truncation=True, return_tensors='pt', max_length = 512)
# Compute token embeddings
with torch.no_grad():
model_output = _model_pool[model_name](**encoded_input)
# Perform pooling. In this case, cls pooling.
sentence_embeddings = model_output[0][:, 0]
# normalize embeddings
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
return sentence_embeddings.cpu().tolist()
def get_general_embedding( text_or_texts , model_name = "BAAI/bge-small-zh-v1.5" ):
if isinstance(text_or_texts, str):
return get_general_embeddings([text_or_texts], model_name)[0]
else:
return get_general_embeddings_safe(text_or_texts, model_name)
general_batch_size = 16
import math
def get_general_embeddings_safe(sentences, model_name = "BAAI/bge-small-zh-v1.5"):
embeddings = []
num_batches = math.ceil(len(sentences) / general_batch_size)
for i in tqdm.tqdm( range(num_batches) ):
# print("run bge with batch ", i)
start_index = i * general_batch_size
end_index = min(len(sentences), start_index + general_batch_size)
batch = sentences[start_index:end_index]
embs = get_general_embeddings(batch, model_name)
embeddings.extend(embs)
return embeddings
def get_bge_zh_embedding( text_or_texts ):
return get_general_embedding(text_or_texts, "BAAI/bge-small-zh-v1.5")
## TODO: 重构bge_en部分的代码,复用general的函数
# ======== add bge model
# by Cheng Li
# for English only right now
_bge_model = None
_bge_tokenizer = None
def get_bge_embeddings( sentences ):
# unsafe ensure batch size by yourself
global _bge_model
global _bge_tokenizer
if _bge_model is None:
from transformers import AutoTokenizer, AutoModel
_bge_tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-small-en-v1.5')
_bge_model = AutoModel.from_pretrained('BAAI/bge-small-en-v1.5')
_bge_model.eval()
# Tokenize sentences
encoded_input = _bge_tokenizer(sentences, padding=True, truncation=True, return_tensors='pt', max_length = 512)
# Compute token embeddings
with torch.no_grad():
model_output = _bge_model(**encoded_input)
# Perform pooling. In this case, cls pooling.
sentence_embeddings = model_output[0][:, 0]
# normalize embeddings
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
return sentence_embeddings.cpu().tolist()
def get_bge_embedding( text_or_texts ):
if isinstance(text_or_texts, str):
return get_bge_embeddings([text_or_texts])[0]
else:
return get_bge_embeddings_safe(text_or_texts)
bge_batch_size = 32
import math
# from tqdm import tqdm
def get_bge_embeddings_safe(sentences):
embeddings = []
num_batches = math.ceil(len(sentences) / bge_batch_size)
for i in tqdm.tqdm( range(num_batches) ):
# print("run bge with batch ", i)
start_index = i * bge_batch_size
end_index = min(len(sentences), start_index + bge_batch_size)
batch = sentences[start_index:end_index]
embs = get_bge_embeddings(batch)
embeddings.extend(embs)
return embeddings
# === add bge model
def tiktokenizer( text ):
global _enc_model
if _enc_model is None:
_enc_model = tiktoken.get_encoding("cl100k_base")
return len(_enc_model.encode(text))
def response_postprocess(text,dialogue_bra_token = '「',dialogue_ket_token = '」'):
lines = text.split('\n')
new_lines = ""
first_name = None
for line in lines:
line = line.strip(" ")
match = re.match(r'^(.*?)[::]' + dialogue_bra_token + r"(.*?)" + dialogue_ket_token + r"$", line)
if match:
curr_name = match.group(1)
# print(curr_name)
if first_name is None:
first_name = curr_name
new_lines += (match.group(2))
else:
if curr_name != first_name:
return first_name + ":" + dialogue_bra_token + new_lines + dialogue_ket_token
else:
new_lines += (match.group(2))
else:
if first_name == None:
return text
else:
return first_name + ":" + dialogue_bra_token + new_lines + dialogue_ket_token
return first_name + ":" + dialogue_bra_token + new_lines + dialogue_ket_token
def download_models():
print("正在下载Luotuo-Bert")
# Import our models. The package will take care of downloading the models automatically
model_args = Namespace(do_mlm=None, pooler_type="cls", temp=0.05, mlp_only_train=False,
init_embeddings_model=None)
model = AutoModel.from_pretrained("silk-road/luotuo-bert-medium", trust_remote_code=True, model_args=model_args).to(
device)
print("Luotuo-Bert下载完毕")
return model
def get_luotuo_model():
global _luotuo_model
if _luotuo_model is None:
_luotuo_model = download_models()
return _luotuo_model
def luotuo_embedding(model, texts):
# Tokenize the texts_source
tokenizer = AutoTokenizer.from_pretrained("silk-road/luotuo-bert-medium")
inputs = tokenizer(texts, padding=True, truncation=False, return_tensors="pt")
inputs = inputs.to(device)
# Extract the embeddings
# Get the embeddings
with torch.no_grad():
embeddings = model(**inputs, output_hidden_states=True, return_dict=True, sent_emb=True).pooler_output
return embeddings
def luotuo_en_embedding( texts ):
# this function implemented by Cheng
global _luotuo_model_en
global _luotuo_en_tokenizer
if _luotuo_model_en is None:
_luotuo_en_tokenizer = AutoTokenizer.from_pretrained("silk-road/luotuo-bert-en")
_luotuo_model_en = AutoModel.from_pretrained("silk-road/luotuo-bert-en").to(device)
if _luotuo_en_tokenizer is None:
_luotuo_en_tokenizer = AutoTokenizer.from_pretrained("silk-road/luotuo-bert-en")
inputs = _luotuo_en_tokenizer(texts, padding=True, truncation=False, return_tensors="pt")
inputs = inputs.to(device)
with torch.no_grad():
embeddings = _luotuo_model_en(**inputs, output_hidden_states=True, return_dict=True, sent_emb=True).pooler_output
return embeddings
def get_embedding_for_chinese(model, texts):
model = model.to(device)
# str or strList
texts = texts if isinstance(texts, list) else [texts]
# 截断
for i in range(len(texts)):
if len(texts[i]) > 510:
texts[i] = texts[i][:510]
if len(texts) >= 64:
embeddings = []
chunk_size = 64
for i in range(0, len(texts), chunk_size):
embeddings.append(luotuo_embedding(model, texts[i: i + chunk_size]))
return torch.cat(embeddings, dim=0)
else:
return luotuo_embedding(model, texts)
def is_chinese_or_english(text):
# no longer use online openai api
return "chinese"
text = list(text)
is_chinese, is_english = 0, 0
for char in text:
# 判断字符的Unicode值是否在中文字符的Unicode范围内
if '\u4e00' <= char <= '\u9fa5':
is_chinese += 4
# 判断字符是否为英文字符(包括大小写字母和常见标点符号)
elif ('\u0041' <= char <= '\u005a') or ('\u0061' <= char <= '\u007a'):
is_english += 1
if is_chinese >= is_english:
return "chinese"
else:
return "english"
def get_embedding_openai(text, model="text-embedding-ada-002"):
text = text.replace("\n", " ")
return client.embeddings.create(input = [text], model=model).data[0].embedding
def get_embedding_for_english(text, model="text-embedding-ada-002"):
text = text.replace("\n", " ")
return client.embeddings.create(input = [text], model=model).data[0].embedding
import os
def luotuo_openai_embedding(texts, is_chinese= None ):
"""
when input is chinese, use luotuo_embedding
when input is english, use openai_embedding
texts can be a list or a string
when texts is a list, return a list of embeddings, using batch inference
when texts is a string, return a single embedding
"""
openai_key = os.environ.get("OPENAI_API_KEY")
if isinstance(texts, list):
index = random.randint(0, len(texts) - 1)
if openai_key is None or is_chinese_or_english(texts[index]) == "chinese":
return [embed.cpu().tolist() for embed in get_embedding_for_chinese(get_luotuo_model(), texts)]
else:
return [get_embedding_for_english(text) for text in texts]
else:
if openai_key is None or is_chinese_or_english(texts) == "chinese":
return get_embedding_for_chinese(get_luotuo_model(), texts)[0].cpu().tolist()
else:
return get_embedding_for_english(texts)
# compute cosine similarity between two vector
def get_cosine_similarity( v1, v2):
v1 = torch.tensor(v1).to(device)
v2 = torch.tensor(v2).to(device)
return torch.cosine_similarity(v1, v2, dim=0).item()
|