fsibthinon commited on
Commit
67f68f8
Β·
1 Parent(s): c05c4ca

πŸ“¦ Add model with LFS tracking

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ e5_finetuned/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ *.json filter=lfs diff=lfs merge=lfs -text
e5_finetuned/1_Pooling/config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a19c83805e1ce4174f3fbfec4ac8d3b8dbae0c958f8fd51b80937eb33e0c5335
3
+ size 296
e5_finetuned/README.md ADDED
@@ -0,0 +1,352 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:30
8
+ - loss:TripletLoss
9
+ base_model: intfloat/multilingual-e5-small
10
+ widget:
11
+ - source_sentence: 'query: ΰΉ€ΰΈͺΰΈ·ΰΉ‰ΰΈ­ΰΉƒΰΈ™'
12
+ sentences:
13
+ - 'positive passage: ΰΉ€ΰΈžΰΈˆΰΉƒΰΈ’ΰΉ„ΰΈ«ΰΈ‘ ΰΉ€ΰΈͺΰΈ·ΰΉ‰ΰΈ­ΰΉƒΰΈ™ΰΈ„ΰΈ₯ΰΈ°ΰΈͺΰΈ΅ 5 ΰΈ•ΰΈ±ΰΈ§ ΰΉ„ΰΈ‹ΰΈͺ์ 38'
14
+ - 'negative passage: Majorkids@ ΰΉ€ΰΈͺΰΈ·ΰΉ‰ΰΈ­ΰΈ’ΰΈ·ΰΈ”ΰΈ₯ΰΈ²ΰΈ’ΰΈ«ΰΈ‘ΰΈ΅ΰΈͺΰΈ΅ΰΈ™ΰΉ‰ΰΈ³ΰΈ•ΰΈ²ΰΈ₯ กางเกงฒมนΰΈͺ์ 130'
15
+ - 'positive passage: ΰΈšΰΈ£ΰΈ²ΰΈ£ΰΈΈΰΉˆΰΈ™ so summer ΰΈͺΰΈ΅ แทน ΰΉ„ΰΈ‹ΰΈͺ์ M'
16
+ - source_sentence: 'query: ΰΈ™ΰΉ‰ΰΈ³ΰΈͺΰΈ‘ΰΈΈΰΈ™ΰΉ„ΰΈžΰΈ£'
17
+ sentences:
18
+ - 'positive passage: Lovejeans กางเกงฒมนΰΈͺ์ ΰΈ‚ΰΈ²ΰΈΰΈ£ΰΈ°ΰΈšΰΈ­ΰΈΰΉƒΰΈ«ΰΈΰΉˆ ΰΈͺΰΈ΅ΰΈŸΰΉ‰ΰΈ²ΰΉ€ΰΈ‚ΰΉ‰ΰΈ‘ ΰΉ€ΰΈ­ΰΈ§ΰΈͺΰΈΉΰΈ‡ ΰΈͺΰΈ΅ΰΉ„ΰΈ‘ΰΉˆΰΈ•ΰΈ
19
+ ΰΈœΰΉ‰ΰΈ²ΰΉ„ΰΈ‘ΰΉˆΰΈ’ΰΈ·ΰΈ” ΰΉ€ΰΈ›ΰΉ‰ΰΈ²ΰΈ‹ΰΈ΄ΰΈ› ΰΈœΰΉ‰ΰΈ²ΰΈ«ΰΈ™ΰΈ²ΰΈ™ΰΈΈΰΉˆΰΈ‘ ΰΈ£ΰΈ«ΰΈ±ΰΈͺ 609'
20
+ - 'negative passage: ΰΈ‘ΰΈ΅ΰΈ”ΰΈͺับ 5 in one'
21
+ - 'positive passage: ΰΈ£ΰΈΈΰΉˆΰΈ™ΰΉ€ΰΈΰΉˆΰΈ² ΰΈ™ΰΉ‰ΰΈ³ΰΈͺΰΈ‘ΰΈΈΰΈ™ΰΉ„ΰΈžΰΈ£ΰΈ­ΰΉ‰ΰΈ­ΰΈ’ΰΉΰΈ”ΰΈ‡ ΰΈšΰΈ³ΰΈ£ΰΈΈΰΈ‡ΰΉ„ΰΈ• ( อ้อฒแดงแท้ 100%) ΰΉ€ΰΈ‹ΰΉ‡ΰΈ—
22
+ 6 ΰΈ‚ΰΈ§ΰΈ”'
23
+ - source_sentence: 'query: ΰΉ€ΰΈͺΰΈ·ΰΉ‰ΰΈ­ΰΉƒΰΈ™'
24
+ sentences:
25
+ - 'positive passage: ΰΈ₯ูกปิงปอง yinhei'
26
+ - 'negative passage: Majorkids@ ΰΉ€ΰΈͺΰΈ·ΰΉ‰ΰΈ­ΰΈœΰΉ‰ΰΈ²ΰΉΰΈŸΰΈŠΰΈ±ΰΉˆΰΈ™ΰΉ€ΰΈ”ΰΉ‡ΰΈ MIU ΰΉ€ΰΈͺΰΈ·ΰΉ‰ΰΈ­ΰΈ’ΰΈ·ΰΈ” ΰΈͺΰΈ΅ΰΈ‚ΰΈ²ΰΈ§ กางเกงฒมนΰΈͺΰΉŒΰΈ‚ΰΈ²ΰΈ’ΰΈ²ΰΈ§
27
+ ΰΈŠΰΈΈΰΈ”ΰΉ€ΰΈ‹ΰΉ‡ΰΈ— 120'
28
+ - 'positive passage: ΰΉ€ΰΈžΰΈˆΰΈžΰΈ₯ΰΈ­ΰΈ’ΰΉƒΰΈͺ ΰΉ€ΰΈͺΰΈ·ΰΉ‰ΰΈ­ΰΉƒΰΈ™ΰΈ„ΰΈ₯ΰΈ°ΰΈͺΰΈ΅ 5 ΰΈ•ΰΈ±ΰΈ§ ΰΉ„ΰΈ‹ΰΈͺ์ 40'
29
+ - source_sentence: 'query: ΰΈ™ΰΉ‰ΰΈ³ΰΈ‘ΰΈ±ΰΈ™'
30
+ sentences:
31
+ - 'negative passage: กระเป๋าΰΈͺΰΈ΅ΰΈžΰΈ·ΰΉ‰ΰΈ™ ΰΉƒΰΈšΰΈΰΈ₯ΰΈ²ΰΈ‡'
32
+ - 'positive passage: ΰΈ™ΰΉ‰ΰΈ³ΰΈ‘ΰΈ±ΰΈ™ΰΈ£ΰΈ³ΰΈ‚ΰΉ‰ΰΈ²ΰΈ§'
33
+ - 'positive passage: ΰΉ„ΰΈ‘ΰΉ‰ΰΈ›ΰΈ΄ΰΈ‡ΰΈ›ΰΈ­ΰΈ‡'
34
+ - source_sentence: 'query: ΰΉ€ΰΈͺΰΈ·ΰΉ‰ΰΈ­ΰΉƒΰΈ™'
35
+ sentences:
36
+ - 'positive passage: ΰΈͺΰΉ‰ΰΈ‘ΰΈ₯ΰΈ΄ΰΉ‰ΰΈ‘ ΰΈ‘ΰΈ°ΰΈ‘ΰΉˆΰΈ§ΰΈ‡ΰΈΰΈ§ΰΈ™ΰΈͺΰΈΈΰΉ‚ΰΈ‚ΰΈ—ΰΈ±ΰΈ’ ΰΈ‘ΰΈ°ΰΈ‘ΰΉˆΰΈ§ΰΈ‡ΰΈΰΈ§ΰΈ™ 1 กิโΰΈ₯กรัฑ'
37
+ - 'negative passage: ΰΉ€ΰΈͺΰΈ·ΰΉ‰ΰΈ­ΰΈžΰΈ’ΰΈ²ΰΈšΰΈ²ΰΈ₯ปก ΰΉ€ΰΈ—ΰΉ€ΰΈ₯อแหΰΈ₯ΰΈ‘ ΰΉ„ΰΈ‘ΰΉˆΰΈ•ΰΈ΄ΰΈ”ΰΈΰΈ£ΰΈ°ΰΈ”ΰΈΈΰΈ‘'
38
+ - 'positive passage: ΰΉ€ΰΈžΰΈˆΰΈ₯ΰΈ΄ΰΈ™ΰΈ£ΰΈ”ΰΈ² ΰΉ€ΰΈͺΰΈ·ΰΉ‰ΰΈ­ΰΉƒΰΈ™ΰΈ„ΰΈ₯ΰΈ°ΰΈͺΰΈ΅ 4 ΰΈ•ΰΈ±ΰΈ§ ΰΉ„ΰΈ‹ΰΈͺ์ 40'
39
+ pipeline_tag: sentence-similarity
40
+ library_name: sentence-transformers
41
+ ---
42
+
43
+ # SentenceTransformer based on intfloat/multilingual-e5-small
44
+
45
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
46
+
47
+ ## Model Details
48
+
49
+ ### Model Description
50
+ - **Model Type:** Sentence Transformer
51
+ - **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision c007d7ef6fd86656326059b28395a7a03a7c5846 -->
52
+ - **Maximum Sequence Length:** 512 tokens
53
+ - **Output Dimensionality:** 384 dimensions
54
+ - **Similarity Function:** Cosine Similarity
55
+ <!-- - **Training Dataset:** Unknown -->
56
+ <!-- - **Language:** Unknown -->
57
+ <!-- - **License:** Unknown -->
58
+
59
+ ### Model Sources
60
+
61
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
62
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
63
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
64
+
65
+ ### Full Model Architecture
66
+
67
+ ```
68
+ SentenceTransformer(
69
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
70
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
71
+ (2): Normalize()
72
+ )
73
+ ```
74
+
75
+ ## Usage
76
+
77
+ ### Direct Usage (Sentence Transformers)
78
+
79
+ First install the Sentence Transformers library:
80
+
81
+ ```bash
82
+ pip install -U sentence-transformers
83
+ ```
84
+
85
+ Then you can load this model and run inference.
86
+ ```python
87
+ from sentence_transformers import SentenceTransformer
88
+
89
+ # Download from the πŸ€— Hub
90
+ model = SentenceTransformer("sentence_transformers_model_id")
91
+ # Run inference
92
+ sentences = [
93
+ 'query: ΰΉ€ΰΈͺΰΈ·ΰΉ‰ΰΈ­ΰΉƒΰΈ™',
94
+ 'positive passage: ΰΉ€ΰΈžΰΈˆΰΈ₯ΰΈ΄ΰΈ™ΰΈ£ΰΈ”ΰΈ² ΰΉ€ΰΈͺΰΈ·ΰΉ‰ΰΈ­ΰΉƒΰΈ™ΰΈ„ΰΈ₯ΰΈ°ΰΈͺΰΈ΅ 4 ΰΈ•ΰΈ±ΰΈ§ ΰΉ„ΰΈ‹ΰΈͺ์ 40',
95
+ 'negative passage: ΰΉ€ΰΈͺΰΈ·ΰΉ‰ΰΈ­ΰΈžΰΈ’ΰΈ²ΰΈšΰΈ²ΰΈ₯ปก ΰΉ€ΰΈ—ΰΉ€ΰΈ₯อแหΰΈ₯ΰΈ‘ ΰΉ„ΰΈ‘ΰΉˆΰΈ•ΰΈ΄ΰΈ”ΰΈΰΈ£ΰΈ°ΰΈ”ΰΈΈΰΈ‘',
96
+ ]
97
+ embeddings = model.encode(sentences)
98
+ print(embeddings.shape)
99
+ # [3, 384]
100
+
101
+ # Get the similarity scores for the embeddings
102
+ similarities = model.similarity(embeddings, embeddings)
103
+ print(similarities.shape)
104
+ # [3, 3]
105
+ ```
106
+
107
+ <!--
108
+ ### Direct Usage (Transformers)
109
+
110
+ <details><summary>Click to see the direct usage in Transformers</summary>
111
+
112
+ </details>
113
+ -->
114
+
115
+ <!--
116
+ ### Downstream Usage (Sentence Transformers)
117
+
118
+ You can finetune this model on your own dataset.
119
+
120
+ <details><summary>Click to expand</summary>
121
+
122
+ </details>
123
+ -->
124
+
125
+ <!--
126
+ ### Out-of-Scope Use
127
+
128
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
129
+ -->
130
+
131
+ <!--
132
+ ## Bias, Risks and Limitations
133
+
134
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
135
+ -->
136
+
137
+ <!--
138
+ ### Recommendations
139
+
140
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
141
+ -->
142
+
143
+ ## Training Details
144
+
145
+ ### Training Dataset
146
+
147
+ #### Unnamed Dataset
148
+
149
+ * Size: 30 training samples
150
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
151
+ * Approximate statistics based on the first 30 samples:
152
+ | | sentence_0 | sentence_1 | sentence_2 |
153
+ |:--------|:--------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
154
+ | type | string | string | string |
155
+ | details | <ul><li>min: 6 tokens</li><li>mean: 7.57 tokens</li><li>max: 9 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 18.47 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 16.97 tokens</li><li>max: 30 tokens</li></ul> |
156
+ * Samples:
157
+ | sentence_0 | sentence_1 | sentence_2 |
158
+ |:-----------------------------|:--------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------|
159
+ | <code>query: ΰΉ€ΰΈͺΰΈ·ΰΉ‰ΰΈ­ΰΉƒΰΈ™</code> | <code>positive passage: ΰΉ€ΰΈžΰΈˆΰΈžΰΈ₯ΰΈ­ΰΈ’ΰΉƒΰΈͺ ΰΉ€ΰΈͺΰΈ·ΰΉ‰ΰΈ­ΰΉƒΰΈ™ΰΈ„ΰΈ₯ΰΈ°ΰΈͺΰΈ΅ 5 ΰΈ•ΰΈ±ΰΈ§ ΰΉ„ΰΈ‹ΰΈͺ์ 40</code> | <code>negative passage: Majorkids@ ΰΉ€ΰΈͺΰΈ·ΰΉ‰ΰΈ­ΰΈœΰΉ‰ΰΈ²ΰΉΰΈŸΰΈŠΰΈ±ΰΉˆΰΈ™ΰΉ€ΰΈ”ΰΉ‡ΰΈ MIU ΰΉ€ΰΈͺΰΈ·ΰΉ‰ΰΈ­ΰΈ’ΰΈ·ΰΈ” ΰΈͺΰΈ΅ΰΈ‚ΰΈ²ΰΈ§ กางเกงฒมนΰΈͺΰΉŒΰΈ‚ΰΈ²ΰΈ’ΰΈ²ΰΈ§ ΰΈŠΰΈΈΰΈ”ΰΉ€ΰΈ‹ΰΉ‡ΰΈ— 120</code> |
160
+ | <code>query: ΰΈ›ΰΈ΄ΰΈ‡ΰΈ›ΰΈ­ΰΈ‡</code> | <code>positive passage: ΰΈ₯ูกปิงปอง sanwei</code> | <code>negative passage: ΰΈŠΰΈΈΰΈ”ΰΉ€ΰΈͺΰΈ·ΰΉ‰ΰΈ­ΰΈ„ΰΈ£ΰΈ­ΰΈ›-ΰΈΰΈ²ΰΈ‡ΰΉ€ΰΈΰΈ‡ΰΈ‚ΰΈ²ΰΈΰΈ£ΰΈ°ΰΈšΰΈ­ΰΈΰΈ„ΰΈ΄ΰΈ•ΰΈ•ΰΈ΄ΰΉ‰</code> |
161
+ | <code>query: ΰΈ›ΰΈ₯ΰΈ²ΰΈͺΰΈ£ΰΉ‰ΰΈ­ΰΈ’</code> | <code>positive passage: ΰΈ›ΰΈ₯ΰΈ²ΰΈ‚ΰΈ²ΰΈ§ΰΈͺร้อฒแห้ง500กรัฑ(ΰΈ„ΰΈ£ΰΈΆΰΉˆΰΈ‡ΰΉ‚ΰΈ₯)</code> | <code>negative passage: ΰΈ‘ΰΈ°ΰΈΰΉˆΰΈ­ΰΈ›ΰΉˆΰΈ² 1กิโΰΈ₯กรัฑ</code> |
162
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
163
+ ```json
164
+ {
165
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
166
+ "triplet_margin": 5
167
+ }
168
+ ```
169
+
170
+ ### Training Hyperparameters
171
+ #### Non-Default Hyperparameters
172
+
173
+ - `per_device_train_batch_size`: 4
174
+ - `per_device_eval_batch_size`: 4
175
+ - `num_train_epochs`: 4
176
+ - `fp16`: True
177
+ - `multi_dataset_batch_sampler`: round_robin
178
+
179
+ #### All Hyperparameters
180
+ <details><summary>Click to expand</summary>
181
+
182
+ - `overwrite_output_dir`: False
183
+ - `do_predict`: False
184
+ - `eval_strategy`: no
185
+ - `prediction_loss_only`: True
186
+ - `per_device_train_batch_size`: 4
187
+ - `per_device_eval_batch_size`: 4
188
+ - `per_gpu_train_batch_size`: None
189
+ - `per_gpu_eval_batch_size`: None
190
+ - `gradient_accumulation_steps`: 1
191
+ - `eval_accumulation_steps`: None
192
+ - `torch_empty_cache_steps`: None
193
+ - `learning_rate`: 5e-05
194
+ - `weight_decay`: 0.0
195
+ - `adam_beta1`: 0.9
196
+ - `adam_beta2`: 0.999
197
+ - `adam_epsilon`: 1e-08
198
+ - `max_grad_norm`: 1
199
+ - `num_train_epochs`: 4
200
+ - `max_steps`: -1
201
+ - `lr_scheduler_type`: linear
202
+ - `lr_scheduler_kwargs`: {}
203
+ - `warmup_ratio`: 0.0
204
+ - `warmup_steps`: 0
205
+ - `log_level`: passive
206
+ - `log_level_replica`: warning
207
+ - `log_on_each_node`: True
208
+ - `logging_nan_inf_filter`: True
209
+ - `save_safetensors`: True
210
+ - `save_on_each_node`: False
211
+ - `save_only_model`: False
212
+ - `restore_callback_states_from_checkpoint`: False
213
+ - `no_cuda`: False
214
+ - `use_cpu`: False
215
+ - `use_mps_device`: False
216
+ - `seed`: 42
217
+ - `data_seed`: None
218
+ - `jit_mode_eval`: False
219
+ - `use_ipex`: False
220
+ - `bf16`: False
221
+ - `fp16`: True
222
+ - `fp16_opt_level`: O1
223
+ - `half_precision_backend`: auto
224
+ - `bf16_full_eval`: False
225
+ - `fp16_full_eval`: False
226
+ - `tf32`: None
227
+ - `local_rank`: 0
228
+ - `ddp_backend`: None
229
+ - `tpu_num_cores`: None
230
+ - `tpu_metrics_debug`: False
231
+ - `debug`: []
232
+ - `dataloader_drop_last`: False
233
+ - `dataloader_num_workers`: 0
234
+ - `dataloader_prefetch_factor`: None
235
+ - `past_index`: -1
236
+ - `disable_tqdm`: False
237
+ - `remove_unused_columns`: True
238
+ - `label_names`: None
239
+ - `load_best_model_at_end`: False
240
+ - `ignore_data_skip`: False
241
+ - `fsdp`: []
242
+ - `fsdp_min_num_params`: 0
243
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
244
+ - `fsdp_transformer_layer_cls_to_wrap`: None
245
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
246
+ - `deepspeed`: None
247
+ - `label_smoothing_factor`: 0.0
248
+ - `optim`: adamw_torch
249
+ - `optim_args`: None
250
+ - `adafactor`: False
251
+ - `group_by_length`: False
252
+ - `length_column_name`: length
253
+ - `ddp_find_unused_parameters`: None
254
+ - `ddp_bucket_cap_mb`: None
255
+ - `ddp_broadcast_buffers`: False
256
+ - `dataloader_pin_memory`: True
257
+ - `dataloader_persistent_workers`: False
258
+ - `skip_memory_metrics`: True
259
+ - `use_legacy_prediction_loop`: False
260
+ - `push_to_hub`: False
261
+ - `resume_from_checkpoint`: None
262
+ - `hub_model_id`: None
263
+ - `hub_strategy`: every_save
264
+ - `hub_private_repo`: None
265
+ - `hub_always_push`: False
266
+ - `gradient_checkpointing`: False
267
+ - `gradient_checkpointing_kwargs`: None
268
+ - `include_inputs_for_metrics`: False
269
+ - `include_for_metrics`: []
270
+ - `eval_do_concat_batches`: True
271
+ - `fp16_backend`: auto
272
+ - `push_to_hub_model_id`: None
273
+ - `push_to_hub_organization`: None
274
+ - `mp_parameters`:
275
+ - `auto_find_batch_size`: False
276
+ - `full_determinism`: False
277
+ - `torchdynamo`: None
278
+ - `ray_scope`: last
279
+ - `ddp_timeout`: 1800
280
+ - `torch_compile`: False
281
+ - `torch_compile_backend`: None
282
+ - `torch_compile_mode`: None
283
+ - `include_tokens_per_second`: False
284
+ - `include_num_input_tokens_seen`: False
285
+ - `neftune_noise_alpha`: None
286
+ - `optim_target_modules`: None
287
+ - `batch_eval_metrics`: False
288
+ - `eval_on_start`: False
289
+ - `use_liger_kernel`: False
290
+ - `eval_use_gather_object`: False
291
+ - `average_tokens_across_devices`: False
292
+ - `prompts`: None
293
+ - `batch_sampler`: batch_sampler
294
+ - `multi_dataset_batch_sampler`: round_robin
295
+
296
+ </details>
297
+
298
+ ### Framework Versions
299
+ - Python: 3.11.12
300
+ - Sentence Transformers: 4.1.0
301
+ - Transformers: 4.52.2
302
+ - PyTorch: 2.6.0+cu124
303
+ - Accelerate: 1.7.0
304
+ - Datasets: 2.14.4
305
+ - Tokenizers: 0.21.1
306
+
307
+ ## Citation
308
+
309
+ ### BibTeX
310
+
311
+ #### Sentence Transformers
312
+ ```bibtex
313
+ @inproceedings{reimers-2019-sentence-bert,
314
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
315
+ author = "Reimers, Nils and Gurevych, Iryna",
316
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
317
+ month = "11",
318
+ year = "2019",
319
+ publisher = "Association for Computational Linguistics",
320
+ url = "https://arxiv.org/abs/1908.10084",
321
+ }
322
+ ```
323
+
324
+ #### TripletLoss
325
+ ```bibtex
326
+ @misc{hermans2017defense,
327
+ title={In Defense of the Triplet Loss for Person Re-Identification},
328
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
329
+ year={2017},
330
+ eprint={1703.07737},
331
+ archivePrefix={arXiv},
332
+ primaryClass={cs.CV}
333
+ }
334
+ ```
335
+
336
+ <!--
337
+ ## Glossary
338
+
339
+ *Clearly define terms in order to be accessible across audiences.*
340
+ -->
341
+
342
+ <!--
343
+ ## Model Card Authors
344
+
345
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
346
+ -->
347
+
348
+ <!--
349
+ ## Model Card Contact
350
+
351
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
352
+ -->
e5_finetuned/config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3962b4049975388d0fb28c540c626de201b358868fa4198821160612270ec01a
3
+ size 628
e5_finetuned/config_sentence_transformers.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb2587e90337a94e75defb79c5144662cb945ff0f2e15bc0036e8d44ea650883
3
+ size 205
e5_finetuned/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c25231d589ec2bc7338f29e3cc24a3ba41247b6f660e513ff7ed1b2a18af12e
3
+ size 470637416
e5_finetuned/modules.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84e40c8e006c9b1d6c122e02cba9b02458120b5fb0c87b746c41e0207cf642cf
3
+ size 349
e5_finetuned/sentence_bert_config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec8e29d6dcb61b611b7d3fdd2982c4524e6ad985959fa7194eacfb655a8d0d51
3
+ size 53
e5_finetuned/sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
e5_finetuned/special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38d989b0fdad0fec0c67c14b1f3c8b68184022cf6d4adc5444526ced8653f738
3
+ size 965
e5_finetuned/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef04f2b385d1514f500e779207ace0f53e30895ce37563179e29f4022d28ca38
3
+ size 17083053
e5_finetuned/tokenizer_config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbdcd9767f0481fd8fd8cd6bce3e73dae7f5c44ce22ae1fde00a66498e71b454
3
+ size 1203