from fastapi import FastAPI from pydantic import BaseModel from transformers import pipeline # 创建 FastAPI 实例 app = FastAPI() # 加载预训练模型 sentiment_model = pipeline("text-classification", model="shahxeebhassan/bert_base_ai_content_detector") # 定义请求体的格式 class TextRequest(BaseModel): text: str # 定义一个 POST 请求处理函数 @app.post("/predict") async def predict(request: TextRequest): result = sentiment_model(request.text) print("处理前的 result:", result) # 获取原始预测结果 original = result[0] # 计算AI的概率 ai_probability = original["score"] if original["label"] == "LABEL_1" else 1 - original["score"] processed_result = [{ "label": "AI" if ai_probability > 0.5 else "Human", "score": ai_probability }] print("处理后的 result:", processed_result) return {"result": processed_result} if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=7860)