Spaces:
Runtime error
Runtime error
| import base64 | |
| import json | |
| from datetime import datetime | |
| import gradio as gr | |
| import torch | |
| from PIL import Image, ImageDraw | |
| from qwen_vl_utils import process_vision_info | |
| from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
| import ast | |
| import os | |
| from datetime import datetime | |
| import numpy as np | |
| # Define constants | |
| DESCRIPTION = "[ShowUI-2B Demo](https://huggingface.co/showlab/ShowUI-2B)" | |
| _SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1." | |
| MIN_PIXELS = 256 * 28 * 28 | |
| MAX_PIXELS = 1344 * 28 * 28 | |
| # Load the model | |
| model = Qwen2VLForConditionalGeneration.from_pretrained( | |
| "./showui-2b", | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto", | |
| ) | |
| # Load the processor | |
| processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS) | |
| # Helper functions | |
| def draw_point(image_input, point=None, radius=5): | |
| """Draw a point on the image.""" | |
| if isinstance(image_input, str): | |
| image = Image.open(image_input) | |
| else: | |
| image = Image.fromarray(np.uint8(image_input)) | |
| if point: | |
| x, y = point[0] * image.width, point[1] * image.height | |
| ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red') | |
| return image | |
| def array_to_image_path(image_array): | |
| """Save the uploaded image and return its path.""" | |
| if image_array is None: | |
| raise ValueError("No image provided. Please upload an image before submitting.") | |
| img = Image.fromarray(np.uint8(image_array)) | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| filename = f"image_{timestamp}.png" | |
| img.save(filename) | |
| return os.path.abspath(filename) | |
| def run_showui(image, query): | |
| """Main function for inference.""" | |
| image_path = array_to_image_path(image) | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "text", "text": _SYSTEM}, | |
| {"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS}, | |
| {"type": "text", "text": query} | |
| ], | |
| } | |
| ] | |
| # Prepare inputs for the model | |
| text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt" | |
| ) | |
| inputs = inputs.to("cuda") | |
| # Generate output | |
| generated_ids = model.generate(**inputs, max_new_tokens=128) | |
| generated_ids_trimmed = [ | |
| out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
| ] | |
| output_text = processor.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| )[0] | |
| # Parse the output into coordinates | |
| click_xy = ast.literal_eval(output_text) | |
| # Draw the point on the image | |
| result_image = draw_point(image_path, click_xy, radius=10) | |
| return result_image, str(click_xy) | |
| # Function to record votes | |
| def record_vote(vote_type, image_path, query, action_generated): | |
| """Record a vote in a JSON file.""" | |
| vote_data = { | |
| "vote_type": vote_type, | |
| "image_path": image_path, | |
| "query": query, | |
| "action_generated": action_generated, | |
| "timestamp": datetime.now().isoformat() | |
| } | |
| with open("votes.json", "a") as f: | |
| f.write(json.dumps(vote_data) + "\n") | |
| return f"Your {vote_type} has been recorded. Thank you!" | |
| # Helper function to handle vote recording | |
| def handle_vote(vote_type, image_path, query, action_generated): | |
| """Handle vote recording by using the consistent image path.""" | |
| if image_path is None: | |
| return "No image uploaded. Please upload an image before voting." | |
| return record_vote(vote_type, image_path, query, action_generated) | |
| # Load logo and encode to Base64 | |
| with open("./assets/showui.png", "rb") as image_file: | |
| base64_image = base64.b64encode(image_file.read()).decode("utf-8") | |
| # Define layout and UI | |
| def build_demo(embed_mode, concurrency_count=1): | |
| with gr.Blocks(title="ShowUI-2B Demo", theme=gr.themes.Default()) as demo: | |
| # State to store the consistent image path | |
| state_image_path = gr.State(value=None) | |
| if not embed_mode: | |
| # Replace the original description with new content | |
| gr.HTML( | |
| f""" | |
| <div style="display: flex; align-items: center; justify-content: center; margin-bottom: 20px;"> | |
| <!-- Logo on the left --> | |
| <a href="https://github.com/showlab/ShowUI" target="_blank" style="margin-right: 20px;"> | |
| <img src="data:image/png;base64,{base64_image}" alt="ShowUI Logo" style="width: auto; height: 66px;"/> | |
| </a> | |
| <!-- Links on the right --> | |
| <div style="display: flex; gap: 15px; font-size: 20px;"> | |
| <a href="https://github.com/showlab/ShowUI" target="_blank">π [Project Homepage]</a> | |
| <a href="https://github.com/showlab/ShowUI" target="_blank">π€[Code]</a> | |
| <a href="https://huggingface.co/showlab/ShowUI-2B" target="_blank">π[Model]</a> | |
| <a href="https://arxiv.org/" target="_blank">π[Paper]</a> | |
| </div> | |
| </div> | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| # Input components | |
| imagebox = gr.Image(type="numpy", label="Input Screenshot") | |
| textbox = gr.Textbox( | |
| show_label=True, | |
| placeholder="Enter a query (e.g., 'Click Nahant')", | |
| label="Query", | |
| ) | |
| submit_btn = gr.Button(value="Submit", variant="primary") | |
| # Placeholder examples | |
| gr.Examples( | |
| examples=[ | |
| ["./examples/safari_google.png", "Click on search bar."], | |
| ["./examples/apple_music.png", "Click on star."], | |
| ], | |
| inputs=[imagebox, textbox], | |
| examples_per_page=2 | |
| ) | |
| with gr.Column(scale=8): | |
| # Output components | |
| output_img = gr.Image(type="pil", label="Output Image") | |
| output_coords = gr.Textbox(label="Clickable Coordinates") | |
| # Buttons for voting, flagging, regenerating, and clearing | |
| with gr.Row(elem_id="action-buttons", equal_height=True): | |
| vote_btn = gr.Button(value="π Vote", variant="secondary") | |
| downvote_btn = gr.Button(value="π Downvote", variant="secondary") | |
| flag_btn = gr.Button(value="π© Flag", variant="secondary") | |
| regenerate_btn = gr.Button(value="π Regenerate", variant="secondary") | |
| clear_btn = gr.Button(value="ποΈ Clear", interactive=True) # Combined Clear button | |
| # Define button actions | |
| def on_submit(image, query): | |
| """Handle the submit button click.""" | |
| if image is None: | |
| raise ValueError("No image provided. Please upload an image before submitting.") | |
| # Generate consistent image path and store it in the state | |
| image_path = array_to_image_path(image) | |
| return run_showui(image, query) + (image_path,) | |
| submit_btn.click( | |
| on_submit, | |
| [imagebox, textbox], | |
| [output_img, output_coords, state_image_path], | |
| ) | |
| clear_btn.click( | |
| lambda: (None, None, None, None, None), | |
| inputs=None, | |
| outputs=[imagebox, textbox, output_img, output_coords, state_image_path], # Clear all outputs | |
| queue=False | |
| ) | |
| regenerate_btn.click( | |
| lambda image, query, state_image_path: run_showui(image, query), | |
| [imagebox, textbox, state_image_path], | |
| [output_img, output_coords], | |
| ) | |
| # Record vote actions without feedback messages | |
| vote_btn.click( | |
| lambda image_path, query, action_generated: handle_vote( | |
| "upvote", image_path, query, action_generated | |
| ), | |
| inputs=[state_image_path, textbox, output_coords], | |
| outputs=[], | |
| queue=False | |
| ) | |
| downvote_btn.click( | |
| lambda image_path, query, action_generated: handle_vote( | |
| "downvote", image_path, query, action_generated | |
| ), | |
| inputs=[state_image_path, textbox, output_coords], | |
| outputs=[], | |
| queue=False | |
| ) | |
| flag_btn.click( | |
| lambda image_path, query, action_generated: handle_vote( | |
| "flag", image_path, query, action_generated | |
| ), | |
| inputs=[state_image_path, textbox, output_coords], | |
| outputs=[], | |
| queue=False | |
| ) | |
| return demo | |
| # Launch the app | |
| if __name__ == "__main__": | |
| demo = build_demo(embed_mode=False) | |
| demo.queue(api_open=False).launch( | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| share=True | |
| ) | |