Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,10 +2,12 @@ import gradio as gr
|
|
2 |
|
3 |
# gr.load("models/shivanikerai/TinyLlama-1.1B-Chat-v1.0-seo-optimised-title-suggestion-v1.0").launch()
|
4 |
# Load model directly
|
5 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
|
7 |
-
|
8 |
-
|
|
|
|
|
9 |
def generate_title_suggestions(keywords, product_info):
|
10 |
# Define the roles and markers
|
11 |
B_SYS, E_SYS = "<<SYS>>", "<</SYS>>"
|
@@ -17,26 +19,28 @@ def generate_title_suggestions(keywords, product_info):
|
|
17 |
prompt = f"""{B_INST} {B_SYS} You are a helpful, respectful and honest assistant for ecommerce product title creation. {E_SYS}\nCreate a SEO optimized e-commerce product title for the keywords:{keywords.strip()}\n{B_in}{product_info}{E_in}\n{E_INST}\n\n{B_out}"""
|
18 |
|
19 |
|
20 |
-
print("Prompt:")
|
21 |
-
print(prompt)
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
31 |
|
32 |
-
print()
|
33 |
|
34 |
# Subtract the length of input_ids from output to get only the model's response
|
35 |
-
output_text = tokenizer.decode(output[0, len(encoding.input_ids[0]):], skip_special_tokens=False)
|
36 |
-
output_text = re.sub('\n+', '\n', output_text) # remove excessive newline characters
|
37 |
|
38 |
-
print("Generated Assistant Response:")
|
39 |
-
print(output_text)
|
40 |
gr.Interface(
|
41 |
generate_title_suggestions,
|
42 |
inputs='text',
|
|
|
2 |
|
3 |
# gr.load("models/shivanikerai/TinyLlama-1.1B-Chat-v1.0-seo-optimised-title-suggestion-v1.0").launch()
|
4 |
# Load model directly
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
6 |
|
7 |
+
pipe = pipeline("text-generation", model="shivanikerai/TinyLlama-1.1B-Chat-v1.0-seo-optimised-title-suggestion-v1.0")
|
8 |
+
|
9 |
+
# tokenizer = AutoTokenizer.from_pretrained("shivanikerai/TinyLlama-1.1B-Chat-v1.0-seo-optimised-title-suggestion-v1.0")
|
10 |
+
# model = AutoModelForCausalLM.from_pretrained("shivanikerai/TinyLlama-1.1B-Chat-v1.0-seo-optimised-title-suggestion-v1.0")
|
11 |
def generate_title_suggestions(keywords, product_info):
|
12 |
# Define the roles and markers
|
13 |
B_SYS, E_SYS = "<<SYS>>", "<</SYS>>"
|
|
|
19 |
prompt = f"""{B_INST} {B_SYS} You are a helpful, respectful and honest assistant for ecommerce product title creation. {E_SYS}\nCreate a SEO optimized e-commerce product title for the keywords:{keywords.strip()}\n{B_in}{product_info}{E_in}\n{E_INST}\n\n{B_out}"""
|
20 |
|
21 |
|
22 |
+
# print("Prompt:")
|
23 |
+
# print(prompt)
|
24 |
+
predictions = pipeline(prompt)
|
25 |
+
output=((predictions[0]['generated_text']).split(B_out)[-1]).strip()
|
26 |
+
return (output)
|
27 |
+
# encoding = tokenizer(prompt, return_tensors="pt").to("cuda:0")
|
28 |
+
# output = model.generate(input_ids=encoding.input_ids,
|
29 |
+
# attention_mask=encoding.attention_mask,
|
30 |
+
# max_new_tokens=1024,
|
31 |
+
# do_sample=True,
|
32 |
+
# temperature=0.01,
|
33 |
+
# eos_token_id=tokenizer.eos_token_id,
|
34 |
+
# top_k=0)
|
35 |
|
36 |
+
# print()
|
37 |
|
38 |
# Subtract the length of input_ids from output to get only the model's response
|
39 |
+
# output_text = tokenizer.decode(output[0, len(encoding.input_ids[0]):], skip_special_tokens=False)
|
40 |
+
# output_text = re.sub('\n+', '\n', output_text) # remove excessive newline characters
|
41 |
|
42 |
+
# print("Generated Assistant Response:")
|
43 |
+
# print(output_text)
|
44 |
gr.Interface(
|
45 |
generate_title_suggestions,
|
46 |
inputs='text',
|