Upload 3 files
Browse files- gradio_app.py +567 -0
- readme_md.md +67 -0
- requirements_txt (2).txt +6 -0
gradio_app.py
ADDED
|
@@ -0,0 +1,567 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
| 4 |
+
import warnings
|
| 5 |
+
warnings.filterwarnings("ignore")
|
| 6 |
+
|
| 7 |
+
class MultiModelIndianAddressNER:
|
| 8 |
+
def __init__(self):
|
| 9 |
+
# Available models configuration
|
| 10 |
+
self.models_config = {
|
| 11 |
+
"TinyBERT": {
|
| 12 |
+
"name": "shiprocket-ai/open-tinybert-indian-address-ner",
|
| 13 |
+
"description": "Lightweight and fast - 66.4M parameters",
|
| 14 |
+
"base_model": "TinyBERT"
|
| 15 |
+
},
|
| 16 |
+
"ModernBERT": {
|
| 17 |
+
"name": "shiprocket-ai/open-modernbert-indian-address-ner",
|
| 18 |
+
"description": "Modern architecture - 599MB model",
|
| 19 |
+
"base_model": "ModernBERT"
|
| 20 |
+
},
|
| 21 |
+
"IndicBERT": {
|
| 22 |
+
"name": "shiprocket-ai/open-indicbert-indian-address-ner",
|
| 23 |
+
"description": "Indic language optimized - 131MB model",
|
| 24 |
+
"base_model": "IndicBERT"
|
| 25 |
+
}
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
# Cache for loaded models
|
| 29 |
+
self.loaded_models = {}
|
| 30 |
+
self.loaded_tokenizers = {}
|
| 31 |
+
|
| 32 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 33 |
+
|
| 34 |
+
# Entity mappings (same for all models)
|
| 35 |
+
self.id2entity = {
|
| 36 |
+
"0": "O",
|
| 37 |
+
"1": "B-building_name",
|
| 38 |
+
"2": "I-building_name",
|
| 39 |
+
"3": "B-city",
|
| 40 |
+
"4": "I-city",
|
| 41 |
+
"5": "B-country",
|
| 42 |
+
"6": "I-country",
|
| 43 |
+
"7": "B-floor",
|
| 44 |
+
"8": "I-floor",
|
| 45 |
+
"9": "B-house_details",
|
| 46 |
+
"10": "I-house_details",
|
| 47 |
+
"11": "B-locality",
|
| 48 |
+
"12": "I-locality",
|
| 49 |
+
"13": "B-pincode",
|
| 50 |
+
"14": "I-pincode",
|
| 51 |
+
"15": "B-road",
|
| 52 |
+
"16": "I-road",
|
| 53 |
+
"17": "B-state",
|
| 54 |
+
"18": "I-state",
|
| 55 |
+
"19": "B-sub_locality",
|
| 56 |
+
"20": "I-sub_locality",
|
| 57 |
+
"21": "B-landmarks",
|
| 58 |
+
"22": "I-landmarks"
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
# Load default model (TinyBERT)
|
| 62 |
+
self.load_model("TinyBERT")
|
| 63 |
+
|
| 64 |
+
def load_model(self, model_key):
|
| 65 |
+
"""Load a specific model if not already loaded"""
|
| 66 |
+
if model_key not in self.loaded_models:
|
| 67 |
+
print(f"Loading {model_key} model...")
|
| 68 |
+
model_name = self.models_config[model_key]["name"]
|
| 69 |
+
|
| 70 |
+
try:
|
| 71 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 72 |
+
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
| 73 |
+
model.to(self.device)
|
| 74 |
+
model.eval()
|
| 75 |
+
|
| 76 |
+
self.loaded_tokenizers[model_key] = tokenizer
|
| 77 |
+
self.loaded_models[model_key] = model
|
| 78 |
+
print(f"✅ {model_key} model loaded successfully!")
|
| 79 |
+
|
| 80 |
+
except Exception as e:
|
| 81 |
+
print(f"❌ Error loading {model_key}: {str(e)}")
|
| 82 |
+
raise e
|
| 83 |
+
|
| 84 |
+
return self.loaded_tokenizers[model_key], self.loaded_models[model_key]
|
| 85 |
+
|
| 86 |
+
def predict(self, address, model_key="TinyBERT"):
|
| 87 |
+
"""Extract entities from an Indian address using specified model"""
|
| 88 |
+
if not address.strip():
|
| 89 |
+
return {}, f"Using {model_key} model"
|
| 90 |
+
|
| 91 |
+
try:
|
| 92 |
+
# Load the selected model
|
| 93 |
+
tokenizer, model = self.load_model(model_key)
|
| 94 |
+
|
| 95 |
+
# Different approaches based on tokenizer type
|
| 96 |
+
if model_key == "IndicBERT":
|
| 97 |
+
# IndicBERT uses SentencePiece - use token-based approach
|
| 98 |
+
entities = self._predict_token_based(address, tokenizer, model)
|
| 99 |
+
else:
|
| 100 |
+
# TinyBERT and ModernBERT - use offset mapping approach
|
| 101 |
+
entities = self._predict_offset_based(address, tokenizer, model)
|
| 102 |
+
|
| 103 |
+
model_info = f"Using {model_key} ({self.models_config[model_key]['description']})"
|
| 104 |
+
return entities
|
| 105 |
+
|
| 106 |
+
def group_entities_sentencepiece(self, tokens, labels, confidences):
|
| 107 |
+
"""Group entities for SentencePiece tokenization (IndicBERT) with proper text reconstruction"""
|
| 108 |
+
entities = {}
|
| 109 |
+
current_entity = None
|
| 110 |
+
|
| 111 |
+
for i, (token, label, conf) in enumerate(zip(tokens, labels, confidences)):
|
| 112 |
+
if token in ["<s>", "</s>", "<pad>", "<unk>"]:
|
| 113 |
+
continue
|
| 114 |
+
|
| 115 |
+
if label.startswith("B-"):
|
| 116 |
+
# Save previous entity
|
| 117 |
+
if current_entity:
|
| 118 |
+
entity_type = current_entity["type"]
|
| 119 |
+
if entity_type not in entities:
|
| 120 |
+
entities[entity_type] = []
|
| 121 |
+
|
| 122 |
+
# Clean up the text by removing SentencePiece markers and extra spaces
|
| 123 |
+
clean_text = self._clean_sentencepiece_text(current_entity["text"])
|
| 124 |
+
entities[entity_type].append({
|
| 125 |
+
"text": clean_text,
|
| 126 |
+
"confidence": current_entity["confidence"]
|
| 127 |
+
})
|
| 128 |
+
|
| 129 |
+
# Start new entity - handle SentencePiece format
|
| 130 |
+
entity_type = label[2:] # Remove "B-"
|
| 131 |
+
clean_token = token.replace("▁", " ").strip()
|
| 132 |
+
current_entity = {
|
| 133 |
+
"type": entity_type,
|
| 134 |
+
"text": clean_token,
|
| 135 |
+
"confidence": conf
|
| 136 |
+
}
|
| 137 |
+
|
| 138 |
+
elif label.startswith("I-") and current_entity:
|
| 139 |
+
# Continue current entity
|
| 140 |
+
entity_type = label[2:] # Remove "I-"
|
| 141 |
+
if entity_type == current_entity["type"]:
|
| 142 |
+
# Handle SentencePiece subword continuation
|
| 143 |
+
if token.startswith("▁"):
|
| 144 |
+
# New word boundary
|
| 145 |
+
current_entity["text"] += " " + token.replace("▁", "")
|
| 146 |
+
else:
|
| 147 |
+
# Subword continuation
|
| 148 |
+
current_entity["text"] += token
|
| 149 |
+
current_entity["confidence"] = (current_entity["confidence"] + conf) / 2
|
| 150 |
+
|
| 151 |
+
elif label == "O" and current_entity:
|
| 152 |
+
# End current entity
|
| 153 |
+
entity_type = current_entity["type"]
|
| 154 |
+
if entity_type not in entities:
|
| 155 |
+
entities[entity_type] = []
|
| 156 |
+
|
| 157 |
+
clean_text = self._clean_sentencepiece_text(current_entity["text"])
|
| 158 |
+
entities[entity_type].append({
|
| 159 |
+
"text": clean_text,
|
| 160 |
+
"confidence": current_entity["confidence"]
|
| 161 |
+
})
|
| 162 |
+
current_entity = None
|
| 163 |
+
|
| 164 |
+
# Add final entity if exists
|
| 165 |
+
if current_entity:
|
| 166 |
+
entity_type = current_entity["type"]
|
| 167 |
+
if entity_type not in entities:
|
| 168 |
+
entities[entity_type] = []
|
| 169 |
+
|
| 170 |
+
clean_text = self._clean_sentencepiece_text(current_entity["text"])
|
| 171 |
+
entities[entity_type].append({
|
| 172 |
+
"text": clean_text,
|
| 173 |
+
"confidence": current_entity["confidence"]
|
| 174 |
+
})
|
| 175 |
+
|
| 176 |
+
return entities
|
| 177 |
+
|
| 178 |
+
def _clean_sentencepiece_text(self, text):
|
| 179 |
+
"""Clean SentencePiece text by removing markers and fixing spacing"""
|
| 180 |
+
# Remove SentencePiece markers
|
| 181 |
+
clean_text = text.replace("▁", " ")
|
| 182 |
+
# Remove extra spaces and clean up
|
| 183 |
+
clean_text = " ".join(clean_text.split())
|
| 184 |
+
# Remove trailing commas and spaces
|
| 185 |
+
clean_text = clean_text.strip().rstrip(",").strip()
|
| 186 |
+
return clean_text, model_info
|
| 187 |
+
|
| 188 |
+
except Exception as e:
|
| 189 |
+
return {}, f"Error with {model_key}: {str(e)}"
|
| 190 |
+
|
| 191 |
+
def _predict_offset_based(self, address, tokenizer, model):
|
| 192 |
+
"""Offset-based prediction for TinyBERT and ModernBERT"""
|
| 193 |
+
inputs = tokenizer(
|
| 194 |
+
address,
|
| 195 |
+
return_tensors="pt",
|
| 196 |
+
truncation=True,
|
| 197 |
+
padding=True,
|
| 198 |
+
max_length=128,
|
| 199 |
+
return_offsets_mapping=True
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
# Extract offset mapping before moving to device
|
| 203 |
+
offset_mapping = inputs.pop("offset_mapping")[0]
|
| 204 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 205 |
+
|
| 206 |
+
# Predict
|
| 207 |
+
with torch.no_grad():
|
| 208 |
+
outputs = model(**inputs)
|
| 209 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 210 |
+
predicted_ids = torch.argmax(predictions, dim=-1)
|
| 211 |
+
confidence_scores = torch.max(predictions, dim=-1)[0]
|
| 212 |
+
|
| 213 |
+
# Extract entities using offset mapping
|
| 214 |
+
return self.extract_entities_with_offsets(
|
| 215 |
+
address,
|
| 216 |
+
predicted_ids[0],
|
| 217 |
+
confidence_scores[0],
|
| 218 |
+
offset_mapping
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
def _predict_token_based(self, address, tokenizer, model):
|
| 222 |
+
"""Token-based prediction for IndicBERT (SentencePiece)"""
|
| 223 |
+
inputs = tokenizer(
|
| 224 |
+
address,
|
| 225 |
+
return_tensors="pt",
|
| 226 |
+
truncation=True,
|
| 227 |
+
padding=True,
|
| 228 |
+
max_length=128
|
| 229 |
+
)
|
| 230 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 231 |
+
|
| 232 |
+
# Predict
|
| 233 |
+
with torch.no_grad():
|
| 234 |
+
outputs = model(**inputs)
|
| 235 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 236 |
+
predicted_ids = torch.argmax(predictions, dim=-1)
|
| 237 |
+
confidence_scores = torch.max(predictions, dim=-1)[0]
|
| 238 |
+
|
| 239 |
+
# Convert to tokens and labels
|
| 240 |
+
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
|
| 241 |
+
predicted_labels = [self.id2entity.get(str(id.item()), "O") for id in predicted_ids[0]]
|
| 242 |
+
confidences = confidence_scores[0].cpu().numpy()
|
| 243 |
+
|
| 244 |
+
# Group entities with proper text reconstruction
|
| 245 |
+
return self.group_entities_sentencepiece(tokens, predicted_labels, confidences)
|
| 246 |
+
|
| 247 |
+
def extract_entities_with_offsets(self, original_text, predicted_ids, confidences, offset_mapping):
|
| 248 |
+
"""Extract entities using offset mapping for accurate text reconstruction"""
|
| 249 |
+
entities = {}
|
| 250 |
+
current_entity = None
|
| 251 |
+
|
| 252 |
+
for i, (pred_id, conf) in enumerate(zip(predicted_ids, confidences)):
|
| 253 |
+
if i >= len(offset_mapping):
|
| 254 |
+
break
|
| 255 |
+
|
| 256 |
+
start, end = offset_mapping[i]
|
| 257 |
+
|
| 258 |
+
# Skip special tokens (they have (0,0) mapping)
|
| 259 |
+
if start == end == 0:
|
| 260 |
+
continue
|
| 261 |
+
|
| 262 |
+
label = self.id2entity.get(str(pred_id.item()), "O")
|
| 263 |
+
|
| 264 |
+
if label.startswith("B-"):
|
| 265 |
+
# Save previous entity
|
| 266 |
+
if current_entity:
|
| 267 |
+
entity_type = current_entity["type"]
|
| 268 |
+
if entity_type not in entities:
|
| 269 |
+
entities[entity_type] = []
|
| 270 |
+
entities[entity_type].append({
|
| 271 |
+
"text": current_entity["text"],
|
| 272 |
+
"confidence": current_entity["confidence"]
|
| 273 |
+
})
|
| 274 |
+
|
| 275 |
+
# Start new entity
|
| 276 |
+
entity_type = label[2:] # Remove "B-"
|
| 277 |
+
current_entity = {
|
| 278 |
+
"type": entity_type,
|
| 279 |
+
"text": original_text[start:end],
|
| 280 |
+
"confidence": conf.item(),
|
| 281 |
+
"start": start,
|
| 282 |
+
"end": end
|
| 283 |
+
}
|
| 284 |
+
|
| 285 |
+
elif label.startswith("I-") and current_entity:
|
| 286 |
+
# Continue current entity
|
| 287 |
+
entity_type = label[2:] # Remove "I-"
|
| 288 |
+
if entity_type == current_entity["type"]:
|
| 289 |
+
# Extend the entity to include this token
|
| 290 |
+
current_entity["text"] = original_text[current_entity["start"]:end]
|
| 291 |
+
current_entity["confidence"] = (current_entity["confidence"] + conf.item()) / 2
|
| 292 |
+
current_entity["end"] = end
|
| 293 |
+
|
| 294 |
+
elif label == "O" and current_entity:
|
| 295 |
+
# End current entity
|
| 296 |
+
entity_type = current_entity["type"]
|
| 297 |
+
if entity_type not in entities:
|
| 298 |
+
entities[entity_type] = []
|
| 299 |
+
entities[entity_type].append({
|
| 300 |
+
"text": current_entity["text"],
|
| 301 |
+
"confidence": current_entity["confidence"]
|
| 302 |
+
})
|
| 303 |
+
current_entity = None
|
| 304 |
+
|
| 305 |
+
# Add final entity if exists
|
| 306 |
+
if current_entity:
|
| 307 |
+
entity_type = current_entity["type"]
|
| 308 |
+
if entity_type not in entities:
|
| 309 |
+
entities[entity_type] = []
|
| 310 |
+
entities[entity_type].append({
|
| 311 |
+
"text": current_entity["text"],
|
| 312 |
+
"confidence": current_entity["confidence"]
|
| 313 |
+
})
|
| 314 |
+
|
| 315 |
+
return entities
|
| 316 |
+
|
| 317 |
+
# Initialize the multi-model system
|
| 318 |
+
print("Initializing Multi-Model Indian Address NER...")
|
| 319 |
+
ner_system = MultiModelIndianAddressNER()
|
| 320 |
+
print("System ready!")
|
| 321 |
+
|
| 322 |
+
def process_address(address_text, selected_model):
|
| 323 |
+
"""Process address and return formatted results with selected model"""
|
| 324 |
+
if not address_text.strip():
|
| 325 |
+
return "Please enter an address to analyze."
|
| 326 |
+
|
| 327 |
+
try:
|
| 328 |
+
# Extract entities using selected model
|
| 329 |
+
entities, model_info = ner_system.predict(address_text, selected_model)
|
| 330 |
+
|
| 331 |
+
if not entities:
|
| 332 |
+
return f"❌ No entities found in the provided address.\n\n**{model_info}**"
|
| 333 |
+
|
| 334 |
+
# Format results
|
| 335 |
+
result = f"📍 **Input Address:** {address_text}\n\n"
|
| 336 |
+
result += f"🤖 **{model_info}**\n\n"
|
| 337 |
+
result += "🏷️ **Extracted Entities:**\n\n"
|
| 338 |
+
|
| 339 |
+
# Sort entities by type for better presentation
|
| 340 |
+
entity_order = [
|
| 341 |
+
'building_name', 'floor', 'house_details', 'road',
|
| 342 |
+
'sub_locality', 'locality', 'landmarks', 'city',
|
| 343 |
+
'state', 'country', 'pincode'
|
| 344 |
+
]
|
| 345 |
+
|
| 346 |
+
displayed_entities = set()
|
| 347 |
+
|
| 348 |
+
# Display entities in order
|
| 349 |
+
for entity_type in entity_order:
|
| 350 |
+
if entity_type in entities and entity_type not in displayed_entities:
|
| 351 |
+
result += f"**{entity_type.replace('_', ' ').title()}:**\n"
|
| 352 |
+
for entity in entities[entity_type]:
|
| 353 |
+
confidence = entity['confidence']
|
| 354 |
+
text = entity['text']
|
| 355 |
+
confidence_icon = "🟢" if confidence > 0.8 else "🟡" if confidence > 0.6 else "🔴"
|
| 356 |
+
result += f" {confidence_icon} {text} (confidence: {confidence:.3f})\n"
|
| 357 |
+
result += "\n"
|
| 358 |
+
displayed_entities.add(entity_type)
|
| 359 |
+
|
| 360 |
+
# Display any remaining entities
|
| 361 |
+
for entity_type, entity_list in entities.items():
|
| 362 |
+
if entity_type not in displayed_entities:
|
| 363 |
+
result += f"**{entity_type.replace('_', ' ').title()}:**\n"
|
| 364 |
+
for entity in entity_list:
|
| 365 |
+
confidence = entity['confidence']
|
| 366 |
+
text = entity['text']
|
| 367 |
+
confidence_icon = "🟢" if confidence > 0.8 else "🟡" if confidence > 0.6 else "🔴"
|
| 368 |
+
result += f" {confidence_icon} {text} (confidence: {confidence:.3f})\n"
|
| 369 |
+
result += "\n"
|
| 370 |
+
|
| 371 |
+
result += "\n**Legend:**\n"
|
| 372 |
+
result += "🟢 High confidence (>0.8)\n"
|
| 373 |
+
result += "🟡 Medium confidence (0.6-0.8)\n"
|
| 374 |
+
result += "🔴 Low confidence (<0.6)\n"
|
| 375 |
+
|
| 376 |
+
return result
|
| 377 |
+
|
| 378 |
+
except Exception as e:
|
| 379 |
+
return f"❌ Error processing address: {str(e)}"
|
| 380 |
+
|
| 381 |
+
def compare_models(address_text):
|
| 382 |
+
"""Compare results from all models"""
|
| 383 |
+
if not address_text.strip():
|
| 384 |
+
return "Please enter an address to compare models."
|
| 385 |
+
|
| 386 |
+
result = f"📍 **Address:** {address_text}\n\n"
|
| 387 |
+
result += "🔄 **Model Comparison:**\n\n"
|
| 388 |
+
|
| 389 |
+
for model_key in ner_system.models_config.keys():
|
| 390 |
+
try:
|
| 391 |
+
entities, model_info = ner_system.predict(address_text, model_key)
|
| 392 |
+
result += f"### {model_key}\n"
|
| 393 |
+
result += f"*{ner_system.models_config[model_key]['description']}*\n\n"
|
| 394 |
+
|
| 395 |
+
if entities:
|
| 396 |
+
entity_count = sum(len(entity_list) for entity_list in entities.values())
|
| 397 |
+
result += f"**Found {entity_count} entities:**\n"
|
| 398 |
+
|
| 399 |
+
for entity_type, entity_list in sorted(entities.items()):
|
| 400 |
+
for entity in entity_list:
|
| 401 |
+
confidence = entity['confidence']
|
| 402 |
+
text = entity['text']
|
| 403 |
+
confidence_icon = "🟢" if confidence > 0.8 else "🟡" if confidence > 0.6 else "🔴"
|
| 404 |
+
result += f" {confidence_icon} {entity_type}: {text} ({confidence:.3f})\n"
|
| 405 |
+
else:
|
| 406 |
+
result += "❌ No entities found\n"
|
| 407 |
+
|
| 408 |
+
result += "\n---\n\n"
|
| 409 |
+
|
| 410 |
+
except Exception as e:
|
| 411 |
+
result += f"### {model_key}\n❌ Error: {str(e)}\n\n---\n\n"
|
| 412 |
+
|
| 413 |
+
return result
|
| 414 |
+
|
| 415 |
+
# Sample addresses for examples
|
| 416 |
+
sample_addresses = [
|
| 417 |
+
"Shop No 123, Sunshine Apartments, Andheri West, Mumbai, 400058",
|
| 418 |
+
"DLF Cyber City, Sector 25, Gurgaon, Haryana",
|
| 419 |
+
"Flat 201, MG Road, Bangalore, Karnataka, 560001",
|
| 420 |
+
"Phoenix Mall, Kurla West, Mumbai",
|
| 421 |
+
"House No 456, Green Park Extension, New Delhi, 110016",
|
| 422 |
+
"Office 302, Tech Park, Electronic City, Bangalore, Karnataka, 560100"
|
| 423 |
+
]
|
| 424 |
+
|
| 425 |
+
# Create Gradio interface
|
| 426 |
+
with gr.Blocks(title="Multi-Model Indian Address NER", theme=gr.themes.Soft()) as demo:
|
| 427 |
+
gr.Markdown("""
|
| 428 |
+
# 🏠 Multi-Model Indian Address Named Entity Recognition
|
| 429 |
+
|
| 430 |
+
Compare different transformer models for extracting components from Indian addresses. Choose between TinyBERT (fast), ModernBERT (modern), and IndicBERT (Indic-optimized).
|
| 431 |
+
|
| 432 |
+
**Supported entities:** Building Name, Floor, House Details, Road, Sub-locality, Locality, Landmarks, City, State, Country, Pincode
|
| 433 |
+
""")
|
| 434 |
+
|
| 435 |
+
with gr.Tab("Single Model Analysis"):
|
| 436 |
+
with gr.Row():
|
| 437 |
+
with gr.Column(scale=1):
|
| 438 |
+
model_dropdown = gr.Dropdown(
|
| 439 |
+
choices=list(ner_system.models_config.keys()),
|
| 440 |
+
value="TinyBERT",
|
| 441 |
+
label="Select Model",
|
| 442 |
+
info="Choose which model to use for entity extraction"
|
| 443 |
+
)
|
| 444 |
+
|
| 445 |
+
address_input = gr.Textbox(
|
| 446 |
+
label="Enter Indian Address",
|
| 447 |
+
placeholder="e.g., Shop No 123, Sunshine Apartments, Andheri West, Mumbai, 400058",
|
| 448 |
+
lines=3,
|
| 449 |
+
max_lines=5
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
submit_btn = gr.Button("🔍 Extract Entities", variant="primary")
|
| 453 |
+
|
| 454 |
+
gr.Markdown("### 📝 Sample Addresses (click to use):")
|
| 455 |
+
sample_buttons = []
|
| 456 |
+
for addr in sample_addresses:
|
| 457 |
+
btn = gr.Button(addr, size="sm")
|
| 458 |
+
btn.click(fn=lambda x=addr: x, outputs=address_input)
|
| 459 |
+
sample_buttons.append(btn)
|
| 460 |
+
|
| 461 |
+
with gr.Column(scale=1):
|
| 462 |
+
output_text = gr.Markdown(
|
| 463 |
+
label="Extracted Entities",
|
| 464 |
+
value="Select a model, enter an address, and click 'Extract Entities' to see the results."
|
| 465 |
+
)
|
| 466 |
+
|
| 467 |
+
# Event handlers for single model
|
| 468 |
+
submit_btn.click(
|
| 469 |
+
fn=process_address,
|
| 470 |
+
inputs=[address_input, model_dropdown],
|
| 471 |
+
outputs=output_text
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
address_input.submit(
|
| 475 |
+
fn=process_address,
|
| 476 |
+
inputs=[address_input, model_dropdown],
|
| 477 |
+
outputs=output_text
|
| 478 |
+
)
|
| 479 |
+
|
| 480 |
+
with gr.Tab("Model Comparison"):
|
| 481 |
+
with gr.Row():
|
| 482 |
+
with gr.Column(scale=1):
|
| 483 |
+
address_compare = gr.Textbox(
|
| 484 |
+
label="Enter Indian Address for Comparison",
|
| 485 |
+
placeholder="e.g., Shop No 123, Sunshine Apartments, Andheri West, Mumbai, 400058",
|
| 486 |
+
lines=3,
|
| 487 |
+
max_lines=5
|
| 488 |
+
)
|
| 489 |
+
|
| 490 |
+
compare_btn = gr.Button("🔄 Compare All Models", variant="secondary")
|
| 491 |
+
|
| 492 |
+
gr.Markdown("### 📝 Sample Addresses (click to use):")
|
| 493 |
+
sample_buttons_compare = []
|
| 494 |
+
for addr in sample_addresses:
|
| 495 |
+
btn = gr.Button(addr, size="sm")
|
| 496 |
+
btn.click(fn=lambda x=addr: x, outputs=address_compare)
|
| 497 |
+
sample_buttons_compare.append(btn)
|
| 498 |
+
|
| 499 |
+
with gr.Column(scale=1):
|
| 500 |
+
comparison_output = gr.Markdown(
|
| 501 |
+
label="Model Comparison Results",
|
| 502 |
+
value="Enter an address and click 'Compare All Models' to see how different models perform."
|
| 503 |
+
)
|
| 504 |
+
|
| 505 |
+
# Event handlers for comparison
|
| 506 |
+
compare_btn.click(
|
| 507 |
+
fn=compare_models,
|
| 508 |
+
inputs=address_compare,
|
| 509 |
+
outputs=comparison_output
|
| 510 |
+
)
|
| 511 |
+
|
| 512 |
+
address_compare.submit(
|
| 513 |
+
fn=compare_models,
|
| 514 |
+
inputs=address_compare,
|
| 515 |
+
outputs=comparison_output
|
| 516 |
+
)
|
| 517 |
+
|
| 518 |
+
with gr.Tab("Model Information"):
|
| 519 |
+
gr.Markdown("""
|
| 520 |
+
## 📊 Available Models
|
| 521 |
+
|
| 522 |
+
### TinyBERT
|
| 523 |
+
- **Base Model**: huawei-noah/TinyBERT_General_6L_768D
|
| 524 |
+
- **Model Size**: ~66.4M parameters
|
| 525 |
+
- **Advantages**: Fastest inference, lowest memory usage, mobile-friendly
|
| 526 |
+
- **Best for**: Real-time applications, edge deployment
|
| 527 |
+
|
| 528 |
+
### ModernBERT
|
| 529 |
+
- **Base Model**: Modern transformer architecture
|
| 530 |
+
- **Model Size**: ~599MB
|
| 531 |
+
- **Advantages**: Latest architectural improvements, balanced performance
|
| 532 |
+
- **Best for**: High-accuracy requirements with reasonable speed
|
| 533 |
+
|
| 534 |
+
### IndicBERT
|
| 535 |
+
- **Base Model**: Indic language optimized transformer
|
| 536 |
+
- **Model Size**: ~131MB
|
| 537 |
+
- **Advantages**: Optimized for Indian languages and contexts
|
| 538 |
+
- **Best for**: Mixed language addresses, regional Indian contexts
|
| 539 |
+
|
| 540 |
+
## 🎯 Entity Types Supported
|
| 541 |
+
|
| 542 |
+
All models can extract the following entities:
|
| 543 |
+
- **Building Name**: Apartment/building names
|
| 544 |
+
- **Floor**: Floor numbers and details
|
| 545 |
+
- **House Details**: House/flat numbers
|
| 546 |
+
- **Road**: Street and road names
|
| 547 |
+
- **Sub-locality**: Sector, block details
|
| 548 |
+
- **Locality**: Area, neighborhood names
|
| 549 |
+
- **Landmarks**: Notable nearby locations
|
| 550 |
+
- **City**: City names
|
| 551 |
+
- **State**: State names
|
| 552 |
+
- **Country**: Country names
|
| 553 |
+
- **Pincode**: Postal codes
|
| 554 |
+
""")
|
| 555 |
+
|
| 556 |
+
gr.Markdown("""
|
| 557 |
+
---
|
| 558 |
+
**Models:**
|
| 559 |
+
- [TinyBERT](https://huggingface.co/shiprocket-ai/open-tinybert-indian-address-ner) |
|
| 560 |
+
[ModernBERT](https://huggingface.co/shiprocket-ai/open-modernbert-indian-address-ner) |
|
| 561 |
+
[IndicBERT](https://huggingface.co/shiprocket-ai/open-indicbert-indian-address-ner)
|
| 562 |
+
|
| 563 |
+
**About:** These models are specifically trained on Indian address patterns and can handle various formats and styles common in Indian addresses.
|
| 564 |
+
""")
|
| 565 |
+
|
| 566 |
+
if __name__ == "__main__":
|
| 567 |
+
demo.launch()
|
readme_md.md
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Multi-Model Indian Address NER Demo
|
| 2 |
+
|
| 3 |
+
This is a Gradio-based demo that allows you to compare three different Indian Address NER models:
|
| 4 |
+
- [TinyBERT](https://huggingface.co/shiprocket-ai/open-tinybert-indian-address-ner) - Lightweight and fast
|
| 5 |
+
- [ModernBERT](https://huggingface.co/shiprocket-ai/open-modernbert-indian-address-ner) - Modern architecture
|
| 6 |
+
- [IndicBERT](https://huggingface.co/shiprocket-ai/open-indicbert-indian-address-ner) - Indic language optimized
|
| 7 |
+
|
| 8 |
+
## What it does
|
| 9 |
+
|
| 10 |
+
This application allows you to:
|
| 11 |
+
|
| 12 |
+
1. **Single Model Analysis**: Choose one model and extract entities from Indian addresses
|
| 13 |
+
2. **Model Comparison**: Compare how all three models perform on the same address
|
| 14 |
+
3. **Interactive Testing**: Use sample addresses or input your own
|
| 15 |
+
|
| 16 |
+
The models can identify:
|
| 17 |
+
|
| 18 |
+
- Building names
|
| 19 |
+
- Floor numbers
|
| 20 |
+
- House details
|
| 21 |
+
- Roads
|
| 22 |
+
- Sub-localities
|
| 23 |
+
- Localities
|
| 24 |
+
- Landmarks
|
| 25 |
+
- Cities
|
| 26 |
+
- States
|
| 27 |
+
- Countries
|
| 28 |
+
- Pincodes
|
| 29 |
+
|
| 30 |
+
## How to use
|
| 31 |
+
|
| 32 |
+
### Single Model Analysis
|
| 33 |
+
1. Select a model from the dropdown (TinyBERT, ModernBERT, or IndicBERT)
|
| 34 |
+
2. Enter an Indian address in the text box
|
| 35 |
+
3. Click "Extract Entities" or press Enter
|
| 36 |
+
4. View the extracted entities with confidence scores
|
| 37 |
+
|
| 38 |
+
### Model Comparison
|
| 39 |
+
1. Go to the "Model Comparison" tab
|
| 40 |
+
2. Enter an address
|
| 41 |
+
3. Click "Compare All Models"
|
| 42 |
+
4. See how each model performs on the same input
|
| 43 |
+
|
| 44 |
+
## Example addresses
|
| 45 |
+
|
| 46 |
+
- Shop No 123, Sunshine Apartments, Andheri West, Mumbai, 400058
|
| 47 |
+
- DLF Cyber City, Sector 25, Gurgaon, Haryana
|
| 48 |
+
- Flat 201, MG Road, Bangalore, Karnataka, 560001
|
| 49 |
+
|
| 50 |
+
## Model Information
|
| 51 |
+
|
| 52 |
+
### TinyBERT
|
| 53 |
+
- **Parameters**: ~66.4M
|
| 54 |
+
- **Advantages**: Fastest inference, lowest memory
|
| 55 |
+
- **Best for**: Real-time applications, mobile deployment
|
| 56 |
+
|
| 57 |
+
### ModernBERT
|
| 58 |
+
- **Parameters**: ~599MB model
|
| 59 |
+
- **Advantages**: Modern architecture, balanced performance
|
| 60 |
+
- **Best for**: High accuracy with reasonable speed
|
| 61 |
+
|
| 62 |
+
### IndicBERT
|
| 63 |
+
- **Parameters**: ~131MB model
|
| 64 |
+
- **Advantages**: Optimized for Indian languages/contexts
|
| 65 |
+
- **Best for**: Mixed language addresses, regional contexts
|
| 66 |
+
|
| 67 |
+
**Framework**: PyTorch + Transformers
|
requirements_txt (2).txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=1.9.0
|
| 2 |
+
transformers>=4.21.0
|
| 3 |
+
gradio>=4.0.0
|
| 4 |
+
numpy>=1.21.0
|
| 5 |
+
tokenizers>=0.13.0
|
| 6 |
+
sentencepiece>=0.1.99
|