Spaces:
Sleeping
Sleeping
File size: 1,444 Bytes
733b3bf 88de9ff 733b3bf 88de9ff 733b3bf 88de9ff 733b3bf 88de9ff 733b3bf 88de9ff 733b3bf 88de9ff 733b3bf 88de9ff 733b3bf 88de9ff 733b3bf 88de9ff 733b3bf 88de9ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import os
import gradio as gr
from google import genai
# Read the API key from the environment variable
api_key = os.getenv("GOOGLE_API_KEY")
client = genai.Client(api_key=api_key)
chat = client.chats.create(model="gemini-2.0-flash")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
api_key="GEMINI_API_KEY",
):
global chat
# Send the user message to the chat
response = chat.send_message(message)
# Retrieve the chat history
history = chat.get_history()
# Format the response and history for display
formatted_history = "\n".join(
[f"role - {msg.role}: {msg.parts[0].text}" for msg in history]
)
return response.text, formatted_history
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()
|