Spaces:
Sleeping
Sleeping
Commit
·
ca7aa50
0
Parent(s):
Initial commit of Paragraph_Checker module for Hugging Face
Browse files- Dockerfile +21 -0
- app.py +42 -0
- paragraph_checker.py +67 -0
- requirements.txt +6 -0
Dockerfile
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.10-slim
|
| 2 |
+
|
| 3 |
+
# Install system dependencies
|
| 4 |
+
RUN apt-get update && \
|
| 5 |
+
apt-get install -y --no-install-recommends \
|
| 6 |
+
openjdk-17-jre-headless \
|
| 7 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 8 |
+
|
| 9 |
+
# Set up application
|
| 10 |
+
WORKDIR /app
|
| 11 |
+
COPY . .
|
| 12 |
+
|
| 13 |
+
# Install Python dependencies
|
| 14 |
+
RUN pip install --no-cache-dir --upgrade pip && \
|
| 15 |
+
pip install --no-cache-dir -r requirements.txt
|
| 16 |
+
|
| 17 |
+
# Pre-download models during build
|
| 18 |
+
RUN python -c "from paragraph_checker import initialize_models; initialize_models()"
|
| 19 |
+
|
| 20 |
+
EXPOSE 5001
|
| 21 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, request, jsonify
|
| 2 |
+
from paragraph_checker import correct_paragraph
|
| 3 |
+
|
| 4 |
+
app = Flask(__name__)
|
| 5 |
+
|
| 6 |
+
@app.route('/correct_text', methods=['POST'])
|
| 7 |
+
def correct_text():
|
| 8 |
+
data = request.get_json()
|
| 9 |
+
text = data.get("paragraph", "")
|
| 10 |
+
|
| 11 |
+
if not text:
|
| 12 |
+
return jsonify({"error": "No text provided"}), 400
|
| 13 |
+
|
| 14 |
+
print("Original Text:", text)
|
| 15 |
+
|
| 16 |
+
try:
|
| 17 |
+
# Get fully corrected text
|
| 18 |
+
fully_corrected = correct_paragraph(text)
|
| 19 |
+
|
| 20 |
+
return jsonify({
|
| 21 |
+
"original_text": text,
|
| 22 |
+
"corrected_text": fully_corrected
|
| 23 |
+
})
|
| 24 |
+
|
| 25 |
+
except Exception as e:
|
| 26 |
+
print(f"Error processing text: {str(e)}")
|
| 27 |
+
return jsonify({
|
| 28 |
+
"error": "An error occurred while processing the text",
|
| 29 |
+
"details": str(e)
|
| 30 |
+
}), 500
|
| 31 |
+
|
| 32 |
+
if __name__ == '__main__':
|
| 33 |
+
# Initialize models at startup
|
| 34 |
+
from paragraph_checker import initialize_models
|
| 35 |
+
print("Loading ML models...")
|
| 36 |
+
try:
|
| 37 |
+
initialize_models()
|
| 38 |
+
print("Models loaded successfully")
|
| 39 |
+
except Exception as e:
|
| 40 |
+
print(f"Error loading models: {str(e)}")
|
| 41 |
+
|
| 42 |
+
app.run(host="0.0.0.0", port=5001, debug=True)
|
paragraph_checker.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import language_tool_python
|
| 2 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
| 3 |
+
|
| 4 |
+
# Global variables for models
|
| 5 |
+
grammar_tool = None
|
| 6 |
+
tense_model = None
|
| 7 |
+
tense_tokenizer = None
|
| 8 |
+
|
| 9 |
+
def initialize_models():
|
| 10 |
+
"""Initialize all ML models at startup"""
|
| 11 |
+
global grammar_tool, tense_model, tense_tokenizer
|
| 12 |
+
|
| 13 |
+
print("Initializing Language Tool...")
|
| 14 |
+
grammar_tool = language_tool_python.LanguageTool('en-US')
|
| 15 |
+
|
| 16 |
+
print("Initializing T5 model...")
|
| 17 |
+
model_name = "Vamsi/T5_Paraphrase_Paws"
|
| 18 |
+
tense_tokenizer = T5Tokenizer.from_pretrained(model_name)
|
| 19 |
+
tense_model = T5ForConditionalGeneration.from_pretrained(model_name)
|
| 20 |
+
|
| 21 |
+
def grammar_correction(text):
|
| 22 |
+
"""Correct grammar using LanguageTool"""
|
| 23 |
+
if not grammar_tool:
|
| 24 |
+
raise Exception("Grammar tool not initialized")
|
| 25 |
+
|
| 26 |
+
matches = grammar_tool.check(text)
|
| 27 |
+
corrected_text = language_tool_python.utils.correct(text, matches)
|
| 28 |
+
return corrected_text
|
| 29 |
+
|
| 30 |
+
def tense_correction(text):
|
| 31 |
+
"""Correct tense using T5 model"""
|
| 32 |
+
if not tense_model or not tense_tokenizer:
|
| 33 |
+
raise Exception("Tense correction models not initialized")
|
| 34 |
+
|
| 35 |
+
input_text = "paraphrase: " + text + " </s>"
|
| 36 |
+
encoding = tense_tokenizer.encode_plus(
|
| 37 |
+
input_text,
|
| 38 |
+
padding='max_length',
|
| 39 |
+
return_tensors="pt",
|
| 40 |
+
max_length=256,
|
| 41 |
+
truncation=True
|
| 42 |
+
)
|
| 43 |
+
input_ids, attention_masks = encoding["input_ids"], encoding["attention_mask"]
|
| 44 |
+
|
| 45 |
+
outputs = tense_model.generate(
|
| 46 |
+
input_ids=input_ids,
|
| 47 |
+
attention_mask=attention_masks,
|
| 48 |
+
max_length=256,
|
| 49 |
+
num_return_sequences=1,
|
| 50 |
+
num_beams=5,
|
| 51 |
+
temperature=1.5
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
paraphrased = tense_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 55 |
+
return paraphrased
|
| 56 |
+
|
| 57 |
+
def correct_paragraph(text):
|
| 58 |
+
"""Complete text correction pipeline"""
|
| 59 |
+
# Step 1: Grammar correction
|
| 60 |
+
grammatically_correct = grammar_correction(text)
|
| 61 |
+
print("After Grammar Correction:", grammatically_correct)
|
| 62 |
+
|
| 63 |
+
# Step 2: Tense correction
|
| 64 |
+
fully_corrected = tense_correction(grammatically_correct)
|
| 65 |
+
print("After Grammar + Tense Correction:", fully_corrected)
|
| 66 |
+
|
| 67 |
+
return fully_corrected
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
flask
|
| 2 |
+
language-tool-python
|
| 3 |
+
transformers
|
| 4 |
+
torch
|
| 5 |
+
sentencepiece
|
| 6 |
+
protobuf
|