Spaces:
Sleeping
Sleeping
Upload 6 files
Browse files- Dockerfile +31 -0
- app.py +92 -0
- cache_models.py +37 -0
- grammar_chatbot.py +159 -0
- paragraph_checker.py +62 -0
- requirements.txt +4 -0
Dockerfile
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Base image
|
| 2 |
+
FROM python:3.10-slim
|
| 3 |
+
|
| 4 |
+
# Environment variables
|
| 5 |
+
ENV PYTHONDONTWRITEBYTECODE=1 \
|
| 6 |
+
PYTHONUNBUFFERED=1
|
| 7 |
+
|
| 8 |
+
# Install dependencies
|
| 9 |
+
RUN apt-get update && apt-get install -y \
|
| 10 |
+
openjdk-17-jre-headless \
|
| 11 |
+
git \
|
| 12 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 13 |
+
|
| 14 |
+
# Set working directory
|
| 15 |
+
WORKDIR /app
|
| 16 |
+
|
| 17 |
+
# Copy all project files
|
| 18 |
+
COPY . .
|
| 19 |
+
|
| 20 |
+
# Install Python packages
|
| 21 |
+
RUN pip install --upgrade pip
|
| 22 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 23 |
+
|
| 24 |
+
# Cache models during build
|
| 25 |
+
RUN python cache_models.py
|
| 26 |
+
|
| 27 |
+
# Expose port
|
| 28 |
+
EXPOSE 8080
|
| 29 |
+
|
| 30 |
+
# Run the Flask app
|
| 31 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, request, jsonify
|
| 2 |
+
from paragraph_checker import ParagraphCorrector
|
| 3 |
+
from grammar_chatbot import GrammarChatbot
|
| 4 |
+
import logging
|
| 5 |
+
|
| 6 |
+
app = Flask(__name__)
|
| 7 |
+
|
| 8 |
+
# Initialize services
|
| 9 |
+
paragraph_service = ParagraphCorrector()
|
| 10 |
+
chatbot_service = GrammarChatbot()
|
| 11 |
+
|
| 12 |
+
# Configure logging
|
| 13 |
+
logging.basicConfig(level=logging.INFO)
|
| 14 |
+
logger = logging.getLogger(__name__)
|
| 15 |
+
|
| 16 |
+
@app.route('/correct_text', methods=['POST'])
|
| 17 |
+
def handle_paragraph():
|
| 18 |
+
"""Endpoint for conservative paragraph correction"""
|
| 19 |
+
data = request.get_json()
|
| 20 |
+
text = data.get('paragraph', '').strip()
|
| 21 |
+
|
| 22 |
+
if not text:
|
| 23 |
+
return jsonify({"error": "No paragraph provided"}), 400
|
| 24 |
+
|
| 25 |
+
try:
|
| 26 |
+
corrected = paragraph_service.conservative_correction(text)
|
| 27 |
+
return jsonify({
|
| 28 |
+
"original_text": text,
|
| 29 |
+
"grammar_corrected": corrected
|
| 30 |
+
})
|
| 31 |
+
except Exception as e:
|
| 32 |
+
logger.error(f"Paragraph correction error: {str(e)}")
|
| 33 |
+
return jsonify({
|
| 34 |
+
"error": "Paragraph processing failed",
|
| 35 |
+
"details": str(e)
|
| 36 |
+
}), 500
|
| 37 |
+
|
| 38 |
+
@app.route('/chat', methods=['POST', 'GET']) # Added GET method for testing
|
| 39 |
+
def handle_chat():
|
| 40 |
+
"""Endpoint for fluent conversational correction"""
|
| 41 |
+
if request.method == 'POST':
|
| 42 |
+
data = request.get_json()
|
| 43 |
+
user_input = data.get('message', '').strip()
|
| 44 |
+
else: # GET method for testing
|
| 45 |
+
user_input = request.args.get('message', '').strip()
|
| 46 |
+
|
| 47 |
+
if not user_input:
|
| 48 |
+
return jsonify({"error": "No message provided"}), 400
|
| 49 |
+
|
| 50 |
+
try:
|
| 51 |
+
response = chatbot_service.generate_response(user_input)
|
| 52 |
+
return jsonify({
|
| 53 |
+
"original_text": response["original_text"],
|
| 54 |
+
"corrected_text": response["corrected_text"],
|
| 55 |
+
"is_corrected": response["is_corrected"],
|
| 56 |
+
"compliment": response["compliment"],
|
| 57 |
+
"next_question": response["next_question"],
|
| 58 |
+
"end_conversation": response["end_conversation"]
|
| 59 |
+
})
|
| 60 |
+
except Exception as e:
|
| 61 |
+
logger.error(f"Chatbot error: {str(e)}")
|
| 62 |
+
return jsonify({
|
| 63 |
+
"error": "Chat processing failed",
|
| 64 |
+
"details": str(e)
|
| 65 |
+
}), 500
|
| 66 |
+
|
| 67 |
+
@app.route('/start', methods=['GET'])
|
| 68 |
+
def start_conversation():
|
| 69 |
+
try:
|
| 70 |
+
response = chatbot_service.start_conversation()
|
| 71 |
+
return jsonify(response)
|
| 72 |
+
except Exception as e:
|
| 73 |
+
logger.error(f"Start conversation error: {str(e)}")
|
| 74 |
+
return jsonify({
|
| 75 |
+
"error": "Failed to start conversation",
|
| 76 |
+
"details": str(e)
|
| 77 |
+
}), 500
|
| 78 |
+
|
| 79 |
+
@app.route('/health', methods=['GET', 'POST']) # Added POST method for testing
|
| 80 |
+
def health_check():
|
| 81 |
+
return jsonify({
|
| 82 |
+
"status": "healthy",
|
| 83 |
+
"services": ["paragraph", "chat"],
|
| 84 |
+
"details": {
|
| 85 |
+
"paragraph_service": "active",
|
| 86 |
+
"chatbot_service": "active"
|
| 87 |
+
}
|
| 88 |
+
})
|
| 89 |
+
|
| 90 |
+
if __name__ == '__main__':
|
| 91 |
+
logger.info("Starting grammar services...")
|
| 92 |
+
app.run(host='0.0.0.0', port=8080, debug=True)
|
cache_models.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import language_tool_python
|
| 2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
def pre_cache_models():
|
| 6 |
+
"""
|
| 7 |
+
Downloads and caches all required models and dependencies.
|
| 8 |
+
This script is run during the Docker build process.
|
| 9 |
+
"""
|
| 10 |
+
print("Caching LanguageTool model...")
|
| 11 |
+
try:
|
| 12 |
+
# This will download and cache the LanguageTool server files
|
| 13 |
+
language_tool_python.LanguageTool('en-US')
|
| 14 |
+
print("LanguageTool model cached successfully.")
|
| 15 |
+
except Exception as e:
|
| 16 |
+
print(f"Failed to cache LanguageTool: {e}")
|
| 17 |
+
|
| 18 |
+
print("\nCaching Hugging Face models...")
|
| 19 |
+
models_to_cache = [
|
| 20 |
+
"vennify/t5-base-grammar-correction",
|
| 21 |
+
"humarin/chatgpt_paraphraser_on_T5_base"
|
| 22 |
+
]
|
| 23 |
+
|
| 24 |
+
for model_name in models_to_cache:
|
| 25 |
+
try:
|
| 26 |
+
print(f"Caching {model_name}...")
|
| 27 |
+
# Cache both tokenizer and model files
|
| 28 |
+
AutoTokenizer.from_pretrained(model_name)
|
| 29 |
+
AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 30 |
+
print(f"{model_name} cached successfully.")
|
| 31 |
+
except Exception as e:
|
| 32 |
+
print(f"Failed to cache {model_name}: {e}")
|
| 33 |
+
|
| 34 |
+
print("\nAll models have been cached.")
|
| 35 |
+
|
| 36 |
+
if __name__ == "__main__":
|
| 37 |
+
pre_cache_models()
|
grammar_chatbot.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 2 |
+
import torch
|
| 3 |
+
import random
|
| 4 |
+
from typing import Dict, List
|
| 5 |
+
|
| 6 |
+
class GrammarChatbot:
|
| 7 |
+
def __init__(self):
|
| 8 |
+
"""Initialize models for fluent corrections"""
|
| 9 |
+
# Initialize models
|
| 10 |
+
self.grammar_model = pipeline(
|
| 11 |
+
"text2text-generation",
|
| 12 |
+
model="vennify/t5-base-grammar-correction",
|
| 13 |
+
device=0 if torch.cuda.is_available() else -1
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
# Fluent paraphrasing model
|
| 17 |
+
self.paraphrase_tokenizer = AutoTokenizer.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
|
| 18 |
+
self.paraphrase_model = AutoModelForSeq2SeqLM.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
|
| 19 |
+
|
| 20 |
+
# Enhanced conversation components
|
| 21 |
+
self.compliments = [
|
| 22 |
+
"Great job! Your English is improving!",
|
| 23 |
+
"Nice improvement! Keep it up!",
|
| 24 |
+
"You're doing well with your practice!",
|
| 25 |
+
"Good effort! I can see you're trying hard!",
|
| 26 |
+
"Excellent try! You're getting better!",
|
| 27 |
+
"Well done! That was much better!",
|
| 28 |
+
"Impressive! Your sentence structure is improving!"
|
| 29 |
+
]
|
| 30 |
+
|
| 31 |
+
# Organized question bank by categories
|
| 32 |
+
self.question_categories = {
|
| 33 |
+
"daily_life": [
|
| 34 |
+
"What did you do this morning?",
|
| 35 |
+
"How do you usually spend your evenings?",
|
| 36 |
+
"What's your morning routine like?",
|
| 37 |
+
"Do you have any plans for this weekend?",
|
| 38 |
+
"What time do you usually wake up?"
|
| 39 |
+
],
|
| 40 |
+
"hobbies": [
|
| 41 |
+
"What hobbies do you enjoy in your free time?",
|
| 42 |
+
"Have you picked up any new hobbies recently?",
|
| 43 |
+
"Do you prefer indoor or outdoor activities?",
|
| 44 |
+
"What's something you've always wanted to try?",
|
| 45 |
+
"Do you play any musical instruments?"
|
| 46 |
+
],
|
| 47 |
+
"food": [
|
| 48 |
+
"What's your favorite comfort food?",
|
| 49 |
+
"Do you enjoy cooking? What's your specialty?",
|
| 50 |
+
"What's the most unusual food you've ever tried?",
|
| 51 |
+
"Do you prefer sweet or savory snacks?",
|
| 52 |
+
"What's your go-to breakfast?"
|
| 53 |
+
],
|
| 54 |
+
"travel": [
|
| 55 |
+
"If you could visit any country, where would you go?",
|
| 56 |
+
"What's the most beautiful place you've ever seen?",
|
| 57 |
+
"Do you prefer beach vacations or city trips?",
|
| 58 |
+
"What's your favorite travel memory?",
|
| 59 |
+
"What's the next place you'd like to visit?"
|
| 60 |
+
],
|
| 61 |
+
"technology": [
|
| 62 |
+
"How do you use technology in your daily life?",
|
| 63 |
+
"What's your opinion about social media?",
|
| 64 |
+
"Do you think AI will change our lives significantly?",
|
| 65 |
+
"What tech gadget couldn't you live without?",
|
| 66 |
+
"How has technology changed your work/studies?"
|
| 67 |
+
],
|
| 68 |
+
"future": [
|
| 69 |
+
"Where do you see yourself in five years?",
|
| 70 |
+
"What's one skill you'd like to learn?",
|
| 71 |
+
"Do you have any big goals for this year?",
|
| 72 |
+
"What would your perfect day look like?",
|
| 73 |
+
"What's something you want to achieve?"
|
| 74 |
+
]
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
self.current_question = None
|
| 78 |
+
self.current_category = None
|
| 79 |
+
self.conversation_history = []
|
| 80 |
+
|
| 81 |
+
def correct_grammar(self, text: str) -> str:
|
| 82 |
+
"""Basic grammar correction"""
|
| 83 |
+
result = self.grammar_model(
|
| 84 |
+
text,
|
| 85 |
+
max_length=256,
|
| 86 |
+
num_beams=4,
|
| 87 |
+
early_stopping=True
|
| 88 |
+
)
|
| 89 |
+
return result[0]['generated_text']
|
| 90 |
+
|
| 91 |
+
def fluent_correction(self, text: str) -> str:
|
| 92 |
+
"""Create fluent, natural rewrites"""
|
| 93 |
+
input_ids = self.paraphrase_tokenizer(
|
| 94 |
+
f"paraphrase: {text}",
|
| 95 |
+
return_tensors="pt",
|
| 96 |
+
max_length=256,
|
| 97 |
+
truncation=True
|
| 98 |
+
).input_ids
|
| 99 |
+
|
| 100 |
+
outputs = self.paraphrase_model.generate(
|
| 101 |
+
input_ids,
|
| 102 |
+
temperature=0.7,
|
| 103 |
+
max_length=256,
|
| 104 |
+
num_beams=5,
|
| 105 |
+
early_stopping=True
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
return self.paraphrase_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 109 |
+
|
| 110 |
+
def _get_next_question(self) -> str:
|
| 111 |
+
"""Select next question based on conversation context"""
|
| 112 |
+
# If we're continuing a category, use follow-up questions
|
| 113 |
+
if self.current_category and random.random() < 0.6: # 60% chance to stay on topic
|
| 114 |
+
return random.choice(self.question_categories[self.current_category])
|
| 115 |
+
|
| 116 |
+
# Otherwise select a new random category
|
| 117 |
+
self.current_category = random.choice(list(self.question_categories.keys()))
|
| 118 |
+
return random.choice(self.question_categories[self.current_category])
|
| 119 |
+
|
| 120 |
+
def generate_response(self, user_input: str) -> Dict:
|
| 121 |
+
"""Generate a conversational response"""
|
| 122 |
+
# Store conversation history
|
| 123 |
+
self.conversation_history.append(("user", user_input))
|
| 124 |
+
|
| 125 |
+
# Correct the input
|
| 126 |
+
corrected = self.fluent_correction(user_input)
|
| 127 |
+
is_corrected = corrected.lower() != user_input.lower()
|
| 128 |
+
|
| 129 |
+
# Generate response
|
| 130 |
+
response = {
|
| 131 |
+
"original_text": user_input,
|
| 132 |
+
"corrected_text": corrected,
|
| 133 |
+
"is_corrected": is_corrected,
|
| 134 |
+
"compliment": random.choice(self.compliments) if is_corrected else "",
|
| 135 |
+
"next_question": self._get_next_question(),
|
| 136 |
+
"end_conversation": False
|
| 137 |
+
}
|
| 138 |
+
|
| 139 |
+
# Update state
|
| 140 |
+
self.current_question = response["next_question"]
|
| 141 |
+
self.conversation_history.append(("bot", response["next_question"]))
|
| 142 |
+
|
| 143 |
+
return response
|
| 144 |
+
|
| 145 |
+
def start_conversation(self) -> Dict:
|
| 146 |
+
"""Initialize a new conversation"""
|
| 147 |
+
self.conversation_history = []
|
| 148 |
+
self.current_category = random.choice(list(self.question_categories.keys()))
|
| 149 |
+
self.current_question = random.choice(self.question_categories[self.current_category])
|
| 150 |
+
|
| 151 |
+
return {
|
| 152 |
+
"message": "Hello! I'm your English practice partner. Let's chat!",
|
| 153 |
+
"next_question": self.current_question,
|
| 154 |
+
"end_conversation": False
|
| 155 |
+
}
|
| 156 |
+
|
| 157 |
+
def get_conversation_history(self) -> List[tuple]:
|
| 158 |
+
"""Get the complete conversation history"""
|
| 159 |
+
return self.conversation_history
|
paragraph_checker.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import language_tool_python
|
| 2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
class ParagraphCorrector:
|
| 6 |
+
def __init__(self):
|
| 7 |
+
"""Initialize correction models with conservative settings"""
|
| 8 |
+
# Grammar tool with increased timeout
|
| 9 |
+
self.grammar_tool = language_tool_python.LanguageTool(
|
| 10 |
+
'en-US',
|
| 11 |
+
config={'maxTextLength': 100000}
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
# Conservative grammar correction model
|
| 15 |
+
self.grammar_model = pipeline(
|
| 16 |
+
"text2text-generation",
|
| 17 |
+
model="vennify/t5-base-grammar-correction",
|
| 18 |
+
device=0 if torch.cuda.is_available() else -1
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
def correct_sentence(self, sentence: str) -> str:
|
| 22 |
+
"""Correct a single sentence conservatively"""
|
| 23 |
+
# Basic grammar/spelling correction
|
| 24 |
+
matches = self.grammar_tool.check(sentence)
|
| 25 |
+
corrected = language_tool_python.utils.correct(sentence, matches)
|
| 26 |
+
|
| 27 |
+
# Light neural correction
|
| 28 |
+
result = self.grammar_model(
|
| 29 |
+
corrected,
|
| 30 |
+
max_length=256,
|
| 31 |
+
num_beams=3,
|
| 32 |
+
temperature=0.3, # Low temperature for minimal changes
|
| 33 |
+
early_stopping=True
|
| 34 |
+
)
|
| 35 |
+
return result[0]['generated_text']
|
| 36 |
+
|
| 37 |
+
def conservative_correction(self, text: str) -> str:
|
| 38 |
+
"""Process text while preserving original structure"""
|
| 39 |
+
if not text.strip():
|
| 40 |
+
return text
|
| 41 |
+
|
| 42 |
+
# Split into sentences while preserving delimiters
|
| 43 |
+
sentences = []
|
| 44 |
+
current = ""
|
| 45 |
+
for char in text:
|
| 46 |
+
current += char
|
| 47 |
+
if char in {'.', '!', '?'}:
|
| 48 |
+
sentences.append(current)
|
| 49 |
+
current = ""
|
| 50 |
+
if current:
|
| 51 |
+
sentences.append(current)
|
| 52 |
+
|
| 53 |
+
# Correct each sentence individually
|
| 54 |
+
corrected_sentences = []
|
| 55 |
+
for sentence in sentences:
|
| 56 |
+
if sentence.strip():
|
| 57 |
+
corrected = self.correct_sentence(sentence)
|
| 58 |
+
corrected_sentences.append(corrected)
|
| 59 |
+
else:
|
| 60 |
+
corrected_sentences.append(sentence)
|
| 61 |
+
|
| 62 |
+
return ''.join(corrected_sentences)
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Flask==3.0.3
|
| 2 |
+
language-tool-python==2.8
|
| 3 |
+
transformers==4.49.0
|
| 4 |
+
torch==2.6.0
|