Spaces:
Sleeping
Sleeping
Update cache_models.py
Browse files- cache_models.py +44 -36
cache_models.py
CHANGED
|
@@ -1,37 +1,45 @@
|
|
| 1 |
-
import
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
print("
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
pre_cache_models()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
# Set cache dirs (must match Dockerfile env vars)
|
| 4 |
+
os.environ['HOME'] = '/app'
|
| 5 |
+
os.environ['HF_HOME'] = '/app/.hf_cache'
|
| 6 |
+
os.environ['LANGTOOL_HOME'] = '/app/.ltool_cache'
|
| 7 |
+
os.environ['XDG_CACHE_HOME'] = '/app/.cache'
|
| 8 |
+
|
| 9 |
+
import language_tool_python
|
| 10 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 11 |
+
import torch
|
| 12 |
+
|
| 13 |
+
def pre_cache_models():
|
| 14 |
+
"""
|
| 15 |
+
Downloads and caches all required models and dependencies.
|
| 16 |
+
This script is run during the Docker build process.
|
| 17 |
+
"""
|
| 18 |
+
print("Caching LanguageTool model...")
|
| 19 |
+
try:
|
| 20 |
+
# This will download and cache the LanguageTool server files
|
| 21 |
+
language_tool_python.LanguageTool('en-US')
|
| 22 |
+
print("LanguageTool model cached successfully.")
|
| 23 |
+
except Exception as e:
|
| 24 |
+
print(f"Failed to cache LanguageTool: {e}")
|
| 25 |
+
|
| 26 |
+
print("\nCaching Hugging Face models...")
|
| 27 |
+
models_to_cache = [
|
| 28 |
+
"vennify/t5-base-grammar-correction",
|
| 29 |
+
"humarin/chatgpt_paraphraser_on_T5_base"
|
| 30 |
+
]
|
| 31 |
+
|
| 32 |
+
for model_name in models_to_cache:
|
| 33 |
+
try:
|
| 34 |
+
print(f"Caching {model_name}...")
|
| 35 |
+
# Cache both tokenizer and model files
|
| 36 |
+
AutoTokenizer.from_pretrained(model_name)
|
| 37 |
+
AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 38 |
+
print(f"{model_name} cached successfully.")
|
| 39 |
+
except Exception as e:
|
| 40 |
+
print(f"Failed to cache {model_name}: {e}")
|
| 41 |
+
|
| 42 |
+
print("\nAll models have been cached.")
|
| 43 |
+
|
| 44 |
+
if __name__ == "__main__":
|
| 45 |
pre_cache_models()
|