shemayons commited on
Commit
f424be6
·
verified ·
1 Parent(s): 8ffe2e2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +173 -173
app.py CHANGED
@@ -1,173 +1,173 @@
1
-
2
- import gradio as gr
3
- from load_image import load_img
4
- import spaces
5
- from transformers import AutoModelForImageSegmentation
6
- import torch
7
- from torchvision import transforms
8
- from PIL import Image
9
- import os
10
- import numpy as np
11
-
12
- torch.set_float32_matmul_precision(["high", "highest"][0])
13
-
14
- # load 2 models
15
-
16
- birefnet = AutoModelForImageSegmentation.from_pretrained(
17
- "ZhengPeng7/BiRefNet", trust_remote_code=True
18
- ).to("cuda")
19
-
20
-
21
- RMBG2 = AutoModelForImageSegmentation.from_pretrained(
22
- "briaai/RMBG-2.0", trust_remote_code=True
23
- ).to("cuda")
24
-
25
- # Keep them in a dict to switch easily
26
- models_dict = {
27
- "BiRefNet": birefnet,
28
- "RMBG-2.0": RMBG2,
29
- }
30
-
31
- # Transform
32
-
33
- transform_image = transforms.Compose(
34
- [
35
- transforms.Resize((1024, 1024)),
36
- transforms.ToTensor(),
37
- transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
38
- ]
39
- )
40
-
41
- @spaces.GPU
42
- def process(image: Image.Image, model_choice: str):
43
- """
44
- Runs inference to remove the background (adds alpha)
45
- with the chosen segmentation model.
46
- """
47
- # Select the model
48
- current_model = models_dict[model_choice]
49
-
50
- # Prepare image
51
- image_size = image.size
52
- input_images = transform_image(image).unsqueeze(0).to("cuda")
53
-
54
- # Inference
55
- with torch.no_grad():
56
- # Each model returns a list of preds in its forward,
57
- # so we take the last element, apply sigmoid, and move to CPU
58
- preds = current_model(input_images)[-1].sigmoid().cpu()
59
-
60
- # Convert single-channel pred to a PIL mask
61
- pred = preds[0].squeeze()
62
- pred_pil = transforms.ToPILImage()(pred)
63
-
64
- # Resize the mask back to original image size
65
- mask = pred_pil.resize(image_size)
66
-
67
- # Add alpha channel to the original
68
- image.putalpha(mask)
69
- return image
70
-
71
- def fn(source: str, model_choice: str):
72
- """
73
- Used by Tab 1 & Tab 2 to produce a processed image with alpha.
74
- - 'source' is either a file path (type="filepath") or
75
- a URL string (textbox).
76
- - 'model_choice' is the user's selection from the radio.
77
- """
78
- # Load from local path or URL
79
- im = load_img(source, output_type="pil")
80
- im = im.convert("RGB")
81
-
82
- # Process
83
- processed_image = process(im, model_choice)
84
- return processed_image
85
-
86
- def process_file(file_path: str, model_choice: str):
87
- """
88
- For Tab 3 (file output).
89
- - Accepts a local path, returns path to a new .png with alpha channel.
90
- - 'model_choice' is also passed in for selecting the model.
91
- """
92
- name_path = file_path.rsplit(".", 1)[0] + ".png"
93
- im = load_img(file_path, output_type="pil")
94
- im = im.convert("RGB")
95
-
96
- # Run the chosen model
97
- transparent = process(im, model_choice)
98
- transparent.save(name_path)
99
- return name_path
100
-
101
-
102
- # GRadio UI
103
-
104
- model_selector_1 = gr.Radio(
105
- choices=["BiRefNet", "RMBG-2.0"],
106
- value="BiRefNet",
107
- label="Select Model"
108
- )
109
- model_selector_2 = gr.Radio(
110
- choices=["BiRefNet", "RMBG-2.0"],
111
- value="BiRefNet",
112
- label="Select Model"
113
- )
114
- model_selector_3 = gr.Radio(
115
- choices=["BiRefNet", "RMBG-2.0"],
116
- value="BiRefNet",
117
- label="Select Model"
118
- )
119
-
120
- # Outputs for tabs 1 & 2: single processed image
121
- processed_img_upload = gr.Image(label="Processed Image (Upload)", type="pil")
122
- processed_img_url = gr.Image(label="Processed Image (URL)", type="pil")
123
-
124
- # For uploading local files
125
- image_upload = gr.Image(label="Upload an image", type="filepath")
126
- image_file_upload = gr.Image(label="Upload an image", type="filepath")
127
-
128
- # For Tab 2 (URL input)
129
- url_input = gr.Textbox(label="Paste an image URL")
130
-
131
- # For Tab 3 (file output)
132
- output_file = gr.File(label="Output PNG File")
133
-
134
- # Tab 1: local image -> processed image
135
- tab1 = gr.Interface(
136
- fn=fn,
137
- inputs=[image_upload, model_selector_1],
138
- outputs=processed_img_upload,
139
- examples=[["ironman.jpg", "BiRefNet/RMBG"]],
140
- api_name="image",
141
- description="Upload an image and choose your background removal model."
142
- )
143
-
144
- # Tab 2: URL input -> processed image
145
- tab2 = gr.Interface(
146
- fn=fn,
147
- inputs=[url_input, model_selector_2],
148
- outputs=processed_img_url,
149
- api_name="text",
150
- description="Paste an image URL and choose your background removal model."
151
- )
152
-
153
- # Tab 3: file output -> returns path to .png
154
- tab3 = gr.Interface(
155
- fn=process_file,
156
- inputs=[image_file_upload, model_selector_3],
157
- outputs=output_file,
158
- examples=[["ironman.jpg", "BiRefNet/RMBG"]],
159
- api_name="png",
160
- description="Upload an image, choose a model, and get a transparent PNG."
161
- )
162
-
163
- # Combine all tabs
164
- demo = gr.TabbedInterface(
165
- [tab1, tab2, tab3],
166
- ["Image Upload", "URL Input", "File Output"],
167
- title="Background Removal Tool"
168
- )
169
-
170
- if __name__ == "__main__":
171
- demo.launch(show_error=True, share=True)
172
-
173
-
 
1
+
2
+ import gradio as gr
3
+ from load_image import load_img
4
+ import spaces
5
+ from transformers import AutoModelForImageSegmentation
6
+ import torch
7
+ from torchvision import transforms
8
+ from PIL import Image
9
+ import os
10
+ import numpy as np
11
+
12
+ torch.set_float32_matmul_precision(["high", "highest"][0])
13
+
14
+ # load 2 models
15
+
16
+ birefnet = AutoModelForImageSegmentation.from_pretrained(
17
+ "ZhengPeng7/BiRefNet", trust_remote_code=True
18
+ )
19
+
20
+
21
+ RMBG2 = AutoModelForImageSegmentation.from_pretrained(
22
+ "briaai/RMBG-2.0", trust_remote_code=True
23
+ )
24
+
25
+ # Keep them in a dict to switch easily
26
+ models_dict = {
27
+ "BiRefNet": birefnet,
28
+ "RMBG-2.0": RMBG2,
29
+ }
30
+
31
+ # Transform
32
+
33
+ transform_image = transforms.Compose(
34
+ [
35
+ transforms.Resize((1024, 1024)),
36
+ transforms.ToTensor(),
37
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
38
+ ]
39
+ )
40
+
41
+ @spaces.GPU
42
+ def process(image: Image.Image, model_choice: str):
43
+ """
44
+ Runs inference to remove the background (adds alpha)
45
+ with the chosen segmentation model.
46
+ """
47
+ # Select the model
48
+ current_model = models_dict[model_choice]
49
+
50
+ # Prepare image
51
+ image_size = image.size
52
+ input_images = transform_image(image).unsqueeze(0).to("cuda")
53
+
54
+ # Inference
55
+ with torch.no_grad():
56
+ # Each model returns a list of preds in its forward,
57
+ # so we take the last element, apply sigmoid, and move to CPU
58
+ preds = current_model(input_images)[-1].sigmoid().cpu()
59
+
60
+ # Convert single-channel pred to a PIL mask
61
+ pred = preds[0].squeeze()
62
+ pred_pil = transforms.ToPILImage()(pred)
63
+
64
+ # Resize the mask back to original image size
65
+ mask = pred_pil.resize(image_size)
66
+
67
+ # Add alpha channel to the original
68
+ image.putalpha(mask)
69
+ return image
70
+
71
+ def fn(source: str, model_choice: str):
72
+ """
73
+ Used by Tab 1 & Tab 2 to produce a processed image with alpha.
74
+ - 'source' is either a file path (type="filepath") or
75
+ a URL string (textbox).
76
+ - 'model_choice' is the user's selection from the radio.
77
+ """
78
+ # Load from local path or URL
79
+ im = load_img(source, output_type="pil")
80
+ im = im.convert("RGB")
81
+
82
+ # Process
83
+ processed_image = process(im, model_choice)
84
+ return processed_image
85
+
86
+ def process_file(file_path: str, model_choice: str):
87
+ """
88
+ For Tab 3 (file output).
89
+ - Accepts a local path, returns path to a new .png with alpha channel.
90
+ - 'model_choice' is also passed in for selecting the model.
91
+ """
92
+ name_path = file_path.rsplit(".", 1)[0] + ".png"
93
+ im = load_img(file_path, output_type="pil")
94
+ im = im.convert("RGB")
95
+
96
+ # Run the chosen model
97
+ transparent = process(im, model_choice)
98
+ transparent.save(name_path)
99
+ return name_path
100
+
101
+
102
+ # GRadio UI
103
+
104
+ model_selector_1 = gr.Radio(
105
+ choices=["BiRefNet", "RMBG-2.0"],
106
+ value="BiRefNet",
107
+ label="Select Model"
108
+ )
109
+ model_selector_2 = gr.Radio(
110
+ choices=["BiRefNet", "RMBG-2.0"],
111
+ value="BiRefNet",
112
+ label="Select Model"
113
+ )
114
+ model_selector_3 = gr.Radio(
115
+ choices=["BiRefNet", "RMBG-2.0"],
116
+ value="BiRefNet",
117
+ label="Select Model"
118
+ )
119
+
120
+ # Outputs for tabs 1 & 2: single processed image
121
+ processed_img_upload = gr.Image(label="Processed Image (Upload)", type="pil")
122
+ processed_img_url = gr.Image(label="Processed Image (URL)", type="pil")
123
+
124
+ # For uploading local files
125
+ image_upload = gr.Image(label="Upload an image", type="filepath")
126
+ image_file_upload = gr.Image(label="Upload an image", type="filepath")
127
+
128
+ # For Tab 2 (URL input)
129
+ url_input = gr.Textbox(label="Paste an image URL")
130
+
131
+ # For Tab 3 (file output)
132
+ output_file = gr.File(label="Output PNG File")
133
+
134
+ # Tab 1: local image -> processed image
135
+ tab1 = gr.Interface(
136
+ fn=fn,
137
+ inputs=[image_upload, model_selector_1],
138
+ outputs=processed_img_upload,
139
+ examples=[["ironman.jpg", "BiRefNet/RMBG"]],
140
+ api_name="image",
141
+ description="Upload an image and choose your background removal model."
142
+ )
143
+
144
+ # Tab 2: URL input -> processed image
145
+ tab2 = gr.Interface(
146
+ fn=fn,
147
+ inputs=[url_input, model_selector_2],
148
+ outputs=processed_img_url,
149
+ api_name="text",
150
+ description="Paste an image URL and choose your background removal model."
151
+ )
152
+
153
+ # Tab 3: file output -> returns path to .png
154
+ tab3 = gr.Interface(
155
+ fn=process_file,
156
+ inputs=[image_file_upload, model_selector_3],
157
+ outputs=output_file,
158
+ examples=[["ironman.jpg", "BiRefNet/RMBG"]],
159
+ api_name="png",
160
+ description="Upload an image, choose a model, and get a transparent PNG."
161
+ )
162
+
163
+ # Combine all tabs
164
+ demo = gr.TabbedInterface(
165
+ [tab1, tab2, tab3],
166
+ ["Image Upload", "URL Input", "File Output"],
167
+ title="Background Removal Tool"
168
+ )
169
+
170
+ if __name__ == "__main__":
171
+ demo.launch(show_error=True, share=True)
172
+
173
+