shemayons commited on
Commit
2daf4de
Β·
verified Β·
1 Parent(s): 039067c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +212 -142
app.py CHANGED
@@ -1,171 +1,241 @@
1
 
2
- import gradio as gr
3
- from load_image import load_img
4
- import spaces
5
- from transformers import AutoModelForImageSegmentation
6
- import torch
7
- from torchvision import transforms
8
- from PIL import Image
9
- import os
10
- import numpy as np
 
 
 
 
 
 
 
 
11
 
12
- torch.set_float32_matmul_precision(["high", "highest"][0])
13
 
14
- # load 2 models
 
 
15
 
16
- birefnet = AutoModelForImageSegmentation.from_pretrained(
17
- "ZhengPeng7/BiRefNet", trust_remote_code=True
18
- ).to("cuda")
 
 
19
 
 
20
 
21
- # RMBG2 = AutoModelForImageSegmentation.from_pretrained(
22
- # "briaai/RMBG-2.0", trust_remote_code=True
 
 
 
 
23
  # )
24
 
25
- # Keep them in a dict to switch easily
26
- models_dict = {
27
- "BiRefNet": birefnet
28
- # "RMBG-2.0": RMBG2,
29
- }
30
-
31
- # Transform
32
-
33
- transform_image = transforms.Compose(
34
- [
35
- transforms.Resize((1024, 1024)),
36
- transforms.ToTensor(),
37
- transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
38
- ]
39
- )
40
-
41
- @spaces.GPU
42
- def process(image: Image.Image, model_choice: str):
43
- """
44
- Runs inference to remove the background (adds alpha)
45
- with the chosen segmentation model.
46
- """
47
- # Select the model
48
- current_model = models_dict[model_choice]
49
-
50
- # Prepare image
51
- image_size = image.size
52
- input_images = transform_image(image).unsqueeze(0)
53
-
54
- # Inference
55
- with torch.no_grad():
56
- # Each model returns a list of preds in its forward,
57
- # so we take the last element, apply sigmoid, and move to CPU
58
- preds = current_model(input_images)[-1].sigmoid().cpu()
59
-
60
- # Convert single-channel pred to a PIL mask
61
- pred = preds[0].squeeze()
62
- pred_pil = transforms.ToPILImage()(pred)
63
-
64
- # Resize the mask back to original image size
65
- mask = pred_pil.resize(image_size)
66
-
67
- # Add alpha channel to the original
68
- image.putalpha(mask)
69
- return image
70
-
71
- def fn(source: str, model_choice: str):
72
- """
73
- Used by Tab 1 & Tab 2 to produce a processed image with alpha.
74
- - 'source' is either a file path (type="filepath") or
75
- a URL string (textbox).
76
- - 'model_choice' is the user's selection from the radio.
77
- """
78
- # Load from local path or URL
79
- im = load_img(source, output_type="pil")
80
- im = im.convert("RGB")
81
-
82
- # Process
83
- processed_image = process(im, model_choice)
84
- return processed_image
85
-
86
- def process_file(file_path: str, model_choice: str):
87
- """
88
- For Tab 3 (file output).
89
- - Accepts a local path, returns path to a new .png with alpha channel.
90
- - 'model_choice' is also passed in for selecting the model.
91
- """
92
- name_path = file_path.rsplit(".", 1)[0] + ".png"
93
- im = load_img(file_path, output_type="pil")
94
- im = im.convert("RGB")
95
-
96
- # Run the chosen model
97
- transparent = process(im, model_choice)
98
- transparent.save(name_path)
99
- return name_path
100
-
101
-
102
- # GRadio UI
103
-
104
- model_selector_1 = gr.Radio(
105
- choices=["BiRefNet"], # , "RMBG-2.0"
106
- value="BiRefNet",
107
- label="Select Model"
108
- )
109
  # model_selector_2 = gr.Radio(
110
- # choices=["BiRefNet", "RMBG-2.0"],
111
  # value="BiRefNet",
112
  # label="Select Model"
113
  # )
114
  # model_selector_3 = gr.Radio(
115
- # choices=["BiRefNet", "RMBG-2.0"],
116
  # value="BiRefNet",
117
  # label="Select Model"
118
  # )
119
 
120
- # Outputs for tabs 1 & 2: single processed image
121
- processed_img_upload = gr.Image(label="Processed Image (Upload)", type="pil")
122
- processed_img_url = gr.Image(label="Processed Image (URL)", type="pil")
123
 
124
- # For uploading local files
125
- image_upload = gr.Image(label="Upload an image", type="filepath")
126
- image_file_upload = gr.Image(label="Upload an image", type="filepath")
127
 
128
- # For Tab 2 (URL input)
129
- url_input = gr.Textbox(label="Paste an image URL")
130
 
131
- # For Tab 3 (file output)
132
- output_file = gr.File(label="Output PNG File")
133
 
134
- # Tab 1: local image -> processed image
135
- tab1 = gr.Interface(
136
- fn=fn,
137
- inputs=[image_upload, model_selector_1],
138
- outputs=processed_img_upload,
139
- api_name="image",
140
- description="Upload an image and choose your background removal model."
141
- )
142
 
143
- # Tab 2: URL input -> processed image
144
- tab2 = gr.Interface(
145
- fn=fn,
146
- inputs=[url_input, model_selector_2],
147
- outputs=processed_img_url,
148
- api_name="text",
149
- description="Paste an image URL and choose your background removal model."
150
- )
151
 
152
- # Tab 3: file output -> returns path to .png
153
- tab3 = gr.Interface(
154
- fn=process_file,
155
- inputs=[image_file_upload, model_selector_3],
156
- outputs=output_file,
157
- api_name="png",
158
- description="Upload an image, choose a model, and get a transparent PNG."
159
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160
 
161
- # Combine all tabs
162
- demo = gr.TabbedInterface(
163
- [tab1, tab2, tab3],
164
- ["Image Upload", "URL Input", "File Output"],
165
- title="Background Removal Tool"
 
166
  )
167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168
  if __name__ == "__main__":
169
  demo.launch(show_error=True, share=True)
170
 
171
-
 
1
 
2
+ # import gradio as gr
3
+ # from load_image import load_img
4
+ # import spaces
5
+ # from transformers import AutoModelForImageSegmentation
6
+ # import torch
7
+ # from torchvision import transforms
8
+ # from PIL import Image
9
+ # import os
10
+ # import numpy as np
11
+
12
+ # torch.set_float32_matmul_precision(["high", "highest"][0])
13
+
14
+ # # load 2 models
15
+
16
+ # birefnet = AutoModelForImageSegmentation.from_pretrained(
17
+ # "ZhengPeng7/BiRefNet", trust_remote_code=True
18
+ # )
19
 
 
20
 
21
+ # # RMBG2 = AutoModelForImageSegmentation.from_pretrained(
22
+ # # "briaai/RMBG-2.0", trust_remote_code=True
23
+ # # )
24
 
25
+ # # Keep them in a dict to switch easily
26
+ # models_dict = {
27
+ # "BiRefNet": birefnet
28
+ # # "RMBG-2.0": RMBG2,
29
+ # }
30
 
31
+ # # Transform
32
 
33
+ # transform_image = transforms.Compose(
34
+ # [
35
+ # transforms.Resize((1024, 1024)),
36
+ # transforms.ToTensor(),
37
+ # transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
38
+ # ]
39
  # )
40
 
41
+ # @spaces.GPU
42
+ # def process(image: Image.Image, model_choice: str):
43
+ # """
44
+ # Runs inference to remove the background (adds alpha)
45
+ # with the chosen segmentation model.
46
+ # """
47
+ # # Select the model
48
+ # current_model = models_dict[model_choice]
49
+
50
+ # # Prepare image
51
+ # image_size = image.size
52
+ # input_images = transform_image(image).unsqueeze(0)
53
+
54
+ # # Inference
55
+ # with torch.no_grad():
56
+ # # Each model returns a list of preds in its forward,
57
+ # # so we take the last element, apply sigmoid, and move to CPU
58
+ # preds = current_model(input_images)[-1].sigmoid().cpu()
59
+
60
+ # # Convert single-channel pred to a PIL mask
61
+ # pred = preds[0].squeeze()
62
+ # pred_pil = transforms.ToPILImage()(pred)
63
+
64
+ # # Resize the mask back to original image size
65
+ # mask = pred_pil.resize(image_size)
66
+
67
+ # # Add alpha channel to the original
68
+ # image.putalpha(mask)
69
+ # return image
70
+
71
+ # def fn(source: str, model_choice: str):
72
+ # """
73
+ # Used by Tab 1 & Tab 2 to produce a processed image with alpha.
74
+ # - 'source' is either a file path (type="filepath") or
75
+ # a URL string (textbox).
76
+ # - 'model_choice' is the user's selection from the radio.
77
+ # """
78
+ # # Load from local path or URL
79
+ # im = load_img(source, output_type="pil")
80
+ # im = im.convert("RGB")
81
+
82
+ # # Process
83
+ # processed_image = process(im, model_choice)
84
+ # return processed_image
85
+
86
+ # def process_file(file_path: str, model_choice: str):
87
+ # """
88
+ # For Tab 3 (file output).
89
+ # - Accepts a local path, returns path to a new .png with alpha channel.
90
+ # - 'model_choice' is also passed in for selecting the model.
91
+ # """
92
+ # name_path = file_path.rsplit(".", 1)[0] + ".png"
93
+ # im = load_img(file_path, output_type="pil")
94
+ # im = im.convert("RGB")
95
+
96
+ # # Run the chosen model
97
+ # transparent = process(im, model_choice)
98
+ # transparent.save(name_path)
99
+ # return name_path
100
+
101
+
102
+ # # GRadio UI
103
+
104
+ # model_selector_1 = gr.Radio(
105
+ # choices=["BiRefNet"], # , "RMBG-2.0"
106
+ # value="BiRefNet",
107
+ # label="Select Model"
108
+ # )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
  # model_selector_2 = gr.Radio(
110
+ # choices=["BiRefNet"],# "RMBG-2.0"],
111
  # value="BiRefNet",
112
  # label="Select Model"
113
  # )
114
  # model_selector_3 = gr.Radio(
115
+ # choices=["BiRefNet"],# "RMBG-2.0"],
116
  # value="BiRefNet",
117
  # label="Select Model"
118
  # )
119
 
120
+ # # Outputs for tabs 1 & 2: single processed image
121
+ # processed_img_upload = gr.Image(label="Processed Image (Upload)", type="pil")
122
+ # processed_img_url = gr.Image(label="Processed Image (URL)", type="pil")
123
 
124
+ # # For uploading local files
125
+ # image_upload = gr.Image(label="Upload an image", type="filepath")
126
+ # image_file_upload = gr.Image(label="Upload an image", type="filepath")
127
 
128
+ # # For Tab 2 (URL input)
129
+ # url_input = gr.Textbox(label="Paste an image URL")
130
 
131
+ # # For Tab 3 (file output)
132
+ # output_file = gr.File(label="Output PNG File")
133
 
134
+ # # Tab 1: local image -> processed image
135
+ # tab1 = gr.Interface(
136
+ # fn=fn,
137
+ # inputs=[image_upload, model_selector_1],
138
+ # outputs=processed_img_upload,
139
+ # api_name="image",
140
+ # description="Upload an image and choose your background removal model."
141
+ # )
142
 
143
+ # # Tab 2: URL input -> processed image
144
+ # tab2 = gr.Interface(
145
+ # fn=fn,
146
+ # inputs=[url_input, model_selector_2],
147
+ # outputs=processed_img_url,
148
+ # api_name="text",
149
+ # description="Paste an image URL and choose your background removal model."
150
+ # )
151
 
152
+ # # Tab 3: file output -> returns path to .png
153
+ # tab3 = gr.Interface(
154
+ # fn=process_file,
155
+ # inputs=[image_file_upload, model_selector_3],
156
+ # outputs=output_file,
157
+ # api_name="png",
158
+ # description="Upload an image, choose a model, and get a transparent PNG."
159
+ # )
160
+
161
+ # # Combine all tabs
162
+ # demo = gr.TabbedInterface(
163
+ # [tab1, tab2, tab3],
164
+ # ["Image Upload", "URL Input", "File Output"],
165
+ # title="Background Removal Tool"
166
+ # )
167
+
168
+ # if __name__ == "__main__":
169
+ # demo.launch(show_error=True, share=True)
170
+
171
+ import gradio as gr
172
+ from load_image import load_img
173
+ import spaces
174
+ from transformers import AutoModelForImageSegmentation
175
+ import torch
176
+ from torchvision import transforms
177
+ from PIL import Image
178
+ import os
179
 
180
+ # precision tweak
181
+ torch.set_float32_matmul_precision("high")
182
+
183
+ # ─── Model & Transforms ─────────────────────────────────────────────────────────
184
+ birefnet = AutoModelForImageSegmentation.from_pretrained(
185
+ "ZhengPeng7/BiRefNet", trust_remote_code=True
186
  )
187
 
188
+ transform_image = transforms.Compose([
189
+ transforms.Resize((1024, 1024)),
190
+ transforms.ToTensor(),
191
+ transforms.Normalize([0.485, 0.456, 0.406],
192
+ [0.229, 0.224, 0.225]),
193
+ ])
194
+
195
+ # ─── Inference fn ────────────────────────────────────────────────────────────────
196
+ @spaces.GPU
197
+ def remove_bg(image: Image.Image):
198
+ orig_size = image.size
199
+ x = transform_image(image).unsqueeze(0)
200
+ out = birefnet(x)
201
+ logits = out.logits
202
+ mask = logits.sigmoid().cpu().squeeze(0)
203
+ mask_pil = transforms.ToPILImage()(mask).resize(orig_size)
204
+ image.putalpha(mask_pil)
205
+ return image
206
+
207
+ # ─── URL wrapper ─────────────────────────────────────────────────────────────────
208
+ def remove_bg_url(url: str):
209
+ img = load_img(url, output_type="pil").convert("RGB")
210
+ return remove_bg(img)
211
+
212
+ # ─── File‐based version ──────────────────────────────────────────────────────────
213
+ def remove_bg_file(path: str):
214
+ img = load_img(path, output_type="pil").convert("RGB")
215
+ out = remove_bg(img)
216
+ out_path = os.path.splitext(path)[0] + ".png"
217
+ out.save(out_path)
218
+ return out_path
219
+
220
+ # ─── Gradio UI ───────────────────────────────────────────────────────────────────
221
+ with gr.Blocks() as demo:
222
+ gr.Markdown("## Background Removal (BiRefNet only)")
223
+
224
+ with gr.Tab("Upload"):
225
+ inp = gr.Image(type="filepath", label="Upload Image")
226
+ out = gr.Image(type="pil", label="Result")
227
+ inp.change(remove_bg, inp, out)
228
+
229
+ with gr.Tab("URL"):
230
+ url_in = gr.Textbox(label="Image URL")
231
+ out_url = gr.Image(type="pil", label="Result")
232
+ url_in.submit(remove_bg_url, url_in, out_url)
233
+
234
+ with gr.Tab("Save PNG"):
235
+ inp2 = gr.File(label="Image File")
236
+ out2 = gr.File(label="Transparent PNG")
237
+ inp2.change(remove_bg_file, inp2, out2)
238
+
239
  if __name__ == "__main__":
240
  demo.launch(show_error=True, share=True)
241