Spaces:
Runtime error
Runtime error
import gradio as gr | |
from gradio import components | |
import numpy as np | |
import pandas as pd | |
import pyarrow | |
import os | |
import requests | |
url = 'https://huggingface.co/datasets/sheacon/song_lyrics/resolve/main/v2ga_w_embeddings_half.parquet' | |
response = requests.get(url, stream=True) | |
filename = os.path.join(os.getcwd(), url.split('/')[-1]) | |
with open(filename, 'wb') as file: | |
for chunk in response.iter_content(chunk_size=8192): | |
if chunk: | |
file.write(chunk) | |
print(f"File '{filename}' download complete.") | |
df = pd.read_parquet('v2ga_w_embeddings_half.parquet') | |
def cosine_similarity(v1, v2): | |
dot_product = np.dot(v1, v2) | |
v1_norm = np.linalg.norm(v1) | |
v2_norm = np.linalg.norm(v2) | |
if v1_norm == 0.0 or v2_norm == 0.0: | |
return np.nan | |
else: | |
similarity = dot_product / (v1_norm * v2_norm) | |
return similarity | |
def relevance_scores(query_embed,df,embeddings): | |
scores = [cosine_similarity(query_embed, v2) for v2 in df[embeddings]] | |
scores = pd.Series(scores) | |
# sort scores in descending order | |
scores = scores.sort_values(ascending=False) | |
# set first score to 0 | |
scores.iloc[0] = 0 | |
return(scores) | |
def semantic_search(artist, title): | |
chosen_song = df[(df['artist'] == artist) & (df['title'] == title)] | |
scores_glove = relevance_scores(chosen_song["embedding_glove"].values[0],df,"embedding_glove") | |
index_glove = scores_glove.idxmax() | |
result_glove = df.iloc[index_glove][['title', 'artist', 'lyrics']] | |
result_glove['lyrics'] = result_glove['lyrics'].replace('\n', '. ') | |
scores_minilm = relevance_scores(chosen_song["embedding_minilm"].values[0],df,"embedding_minilm") | |
index_minilm = scores_minilm.idxmax() | |
result_minilm = df.iloc[index_minilm][['title', 'artist', 'lyrics']] | |
result_minilm['lyrics'] = result_minilm['lyrics'].replace('\n', '. ') | |
scores_roberta = relevance_scores(chosen_song["embedding_roberta"].values[0],df,"embedding_roberta") | |
index_roberta = scores_roberta.idxmax() | |
result_roberta = df.iloc[index_roberta][['title', 'artist', 'lyrics']] | |
result_roberta['lyrics'] = result_roberta['lyrics'].replace('\n', '. ') | |
scores_gpt = relevance_scores(chosen_song["embedding_gpt"].values[0],df,"embedding_gpt") | |
index_gpt = scores_gpt.idxmax() | |
result_gpt = df.iloc[index_gpt][['title', 'artist', 'lyrics']] | |
result_gpt['lyrics'] = result_gpt['lyrics'].replace('\n', '. ') | |
chosen_song = chosen_song[['title', 'artist', 'lyrics']].iloc[0] | |
chosen_song['lyrics'] = chosen_song['lyrics'].replace('\n', '. ') | |
results = { | |
'chosen_song': chosen_song.to_dict(), | |
'glove': result_glove.to_dict(), | |
'minilm': result_minilm.to_dict(), | |
'roberta': result_roberta.to_dict(), | |
'gpt': result_gpt.to_dict() | |
} | |
return results | |
from gradio.components import Dropdown | |
artists = sorted(df['artist'].unique()) | |
titles = sorted(df['title'].unique()) | |
artist_dropdown = Dropdown(artists, label="Artist") | |
title_dropdown = Dropdown(titles, label="Title") | |
# 100 random examples | |
df_sample = df.sample(100) | |
sample_artists = df_sample['artist'].tolist() | |
sample_titles = df_sample['title'].tolist() | |
artist_title_sample = [[artist, titles] for artist, titles in zip(sample_artists, sample_titles)] | |
output_interface = gr.components.JSON(label="Similar Songs") | |
iface = gr.Interface( | |
fn=semantic_search, | |
inputs=[artist_dropdown, title_dropdown], | |
outputs=output_interface, | |
examples=artist_title_sample, | |
title="Similar Song Finder", | |
description="Find four similar songs to the selected song based on different embeddings (GloVe, MiniLM, RoBERTa, GPT)." | |
) | |
iface.launch() | |