Spaces:
Runtime error
Runtime error
File size: 9,962 Bytes
a4d7b31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
# Have SwinIR upsample
# Have BLIP auto caption
# Have CLIPSeg auto mask concept
from typing import List, Literal, Union, Optional, Tuple
import os
from PIL import Image, ImageFilter
import torch
import numpy as np
import fire
from tqdm import tqdm
import glob
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
@torch.no_grad()
def swin_ir_sr(
images: List[Image.Image],
model_id: Literal[
"caidas/swin2SR-classical-sr-x2-64", "caidas/swin2SR-classical-sr-x4-48"
] = "caidas/swin2SR-classical-sr-x2-64",
target_size: Optional[Tuple[int, int]] = None,
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"),
**kwargs,
) -> List[Image.Image]:
"""
Upscales images using SwinIR. Returns a list of PIL images.
"""
# So this is currently in main branch, so this can be used in the future I guess?
from transformers import Swin2SRForImageSuperResolution, Swin2SRImageProcessor
model = Swin2SRForImageSuperResolution.from_pretrained(
model_id,
).to(device)
processor = Swin2SRImageProcessor()
out_images = []
for image in tqdm(images):
ori_w, ori_h = image.size
if target_size is not None:
if ori_w >= target_size[0] and ori_h >= target_size[1]:
out_images.append(image)
continue
inputs = processor(image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
output = (
outputs.reconstruction.data.squeeze().float().cpu().clamp_(0, 1).numpy()
)
output = np.moveaxis(output, source=0, destination=-1)
output = (output * 255.0).round().astype(np.uint8)
output = Image.fromarray(output)
out_images.append(output)
return out_images
@torch.no_grad()
def clipseg_mask_generator(
images: List[Image.Image],
target_prompts: Union[List[str], str],
model_id: Literal[
"CIDAS/clipseg-rd64-refined", "CIDAS/clipseg-rd16"
] = "CIDAS/clipseg-rd64-refined",
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"),
bias: float = 0.01,
temp: float = 1.0,
**kwargs,
) -> List[Image.Image]:
"""
Returns a greyscale mask for each image, where the mask is the probability of the target prompt being present in the image
"""
if isinstance(target_prompts, str):
print(
f'Warning: only one target prompt "{target_prompts}" was given, so it will be used for all images'
)
target_prompts = [target_prompts] * len(images)
processor = CLIPSegProcessor.from_pretrained(model_id)
model = CLIPSegForImageSegmentation.from_pretrained(model_id).to(device)
masks = []
for image, prompt in tqdm(zip(images, target_prompts)):
original_size = image.size
inputs = processor(
text=[prompt, ""],
images=[image] * 2,
padding="max_length",
truncation=True,
return_tensors="pt",
).to(device)
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits / temp, dim=0)[0]
probs = (probs + bias).clamp_(0, 1)
probs = 255 * probs / probs.max()
# make mask greyscale
mask = Image.fromarray(probs.cpu().numpy()).convert("L")
# resize mask to original size
mask = mask.resize(original_size)
masks.append(mask)
return masks
@torch.no_grad()
def blip_captioning_dataset(
images: List[Image.Image],
text: Optional[str] = None,
model_id: Literal[
"Salesforce/blip-image-captioning-large",
"Salesforce/blip-image-captioning-base",
] = "Salesforce/blip-image-captioning-large",
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
**kwargs,
) -> List[str]:
"""
Returns a list of captions for the given images
"""
from transformers import BlipProcessor, BlipForConditionalGeneration
processor = BlipProcessor.from_pretrained(model_id)
model = BlipForConditionalGeneration.from_pretrained(model_id).to(device)
captions = []
for image in tqdm(images):
inputs = processor(image, text=text, return_tensors="pt").to("cuda")
out = model.generate(
**inputs, max_length=150, do_sample=True, top_k=50, temperature=0.7
)
caption = processor.decode(out[0], skip_special_tokens=True)
captions.append(caption)
return captions
def face_mask_google_mediapipe(
images: List[Image.Image], blur_amount: float = 80.0, bias: float = 0.05
) -> List[Image.Image]:
"""
Returns a list of images with mask on the face parts.
"""
import mediapipe as mp
mp_face_detection = mp.solutions.face_detection
face_detection = mp_face_detection.FaceDetection(
model_selection=1, min_detection_confidence=0.5
)
masks = []
for image in tqdm(images):
image = np.array(image)
results = face_detection.process(image)
black_image = np.ones((image.shape[0], image.shape[1]), dtype=np.uint8)
if results.detections:
for detection in results.detections:
x_min = int(
detection.location_data.relative_bounding_box.xmin * image.shape[1]
)
y_min = int(
detection.location_data.relative_bounding_box.ymin * image.shape[0]
)
width = int(
detection.location_data.relative_bounding_box.width * image.shape[1]
)
height = int(
detection.location_data.relative_bounding_box.height
* image.shape[0]
)
# draw the colored rectangle
black_image[y_min : y_min + height, x_min : x_min + width] = 255
black_image = Image.fromarray(black_image)
masks.append(black_image)
return masks
def _crop_to_square(
image: Image.Image, com: List[Tuple[int, int]], resize_to: Optional[int] = None
):
cx, cy = com
width, height = image.size
if width > height:
left_possible = max(cx - height / 2, 0)
left = min(left_possible, width - height)
right = left + height
top = 0
bottom = height
else:
left = 0
right = width
top_possible = max(cy - width / 2, 0)
top = min(top_possible, height - width)
bottom = top + width
image = image.crop((left, top, right, bottom))
if resize_to:
image = image.resize((resize_to, resize_to), Image.Resampling.LANCZOS)
return image
def _center_of_mass(mask: Image.Image):
"""
Returns the center of mass of the mask
"""
x, y = np.meshgrid(np.arange(mask.size[0]), np.arange(mask.size[1]))
x_ = x * np.array(mask)
y_ = y * np.array(mask)
x = np.sum(x_) / np.sum(mask)
y = np.sum(y_) / np.sum(mask)
return x, y
def load_and_save_masks_and_captions(
files: Union[str, List[str]],
output_dir: str,
caption_text: Optional[str] = None,
target_prompts: Optional[Union[List[str], str]] = None,
target_size: int = 512,
crop_based_on_salience: bool = True,
use_face_detection_instead: bool = False,
temp: float = 1.0,
n_length: int = -1,
):
"""
Loads images from the given files, generates masks for them, and saves the masks and captions and upscale images
to output dir.
"""
os.makedirs(output_dir, exist_ok=True)
# load images
if isinstance(files, str):
# check if it is a directory
if os.path.isdir(files):
# get all the .png .jpg in the directory
files = glob.glob(os.path.join(files, "*.png")) + glob.glob(
os.path.join(files, "*.jpg")
)
if len(files) == 0:
raise Exception(
f"No files found in {files}. Either {files} is not a directory or it does not contain any .png or .jpg files."
)
if n_length == -1:
n_length = len(files)
files = sorted(files)[:n_length]
images = [Image.open(file) for file in files]
# captions
print(f"Generating {len(images)} captions...")
captions = blip_captioning_dataset(images, text=caption_text)
if target_prompts is None:
target_prompts = captions
print(f"Generating {len(images)} masks...")
if not use_face_detection_instead:
seg_masks = clipseg_mask_generator(
images=images, target_prompts=target_prompts, temp=temp
)
else:
seg_masks = face_mask_google_mediapipe(images=images)
# find the center of mass of the mask
if crop_based_on_salience:
coms = [_center_of_mass(mask) for mask in seg_masks]
else:
coms = [(image.size[0] / 2, image.size[1] / 2) for image in images]
# based on the center of mass, crop the image to a square
images = [
_crop_to_square(image, com, resize_to=None) for image, com in zip(images, coms)
]
print(f"Upscaling {len(images)} images...")
# upscale images anyways
images = swin_ir_sr(images, target_size=(target_size, target_size))
images = [
image.resize((target_size, target_size), Image.Resampling.LANCZOS)
for image in images
]
seg_masks = [
_crop_to_square(mask, com, resize_to=target_size)
for mask, com in zip(seg_masks, coms)
]
with open(os.path.join(output_dir, "caption.txt"), "w") as f:
# save images and masks
for idx, (image, mask, caption) in enumerate(zip(images, seg_masks, captions)):
image.save(os.path.join(output_dir, f"{idx}.src.jpg"), quality=99)
mask.save(os.path.join(output_dir, f"{idx}.mask.png"))
f.write(caption + "\n")
def main():
fire.Fire(load_and_save_masks_and_captions)
|