|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
model = pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment") |
|
|
|
def sentiment(text): |
|
analysis = model(text) |
|
return analysis[0]['label'] |
|
|
|
with gr.Blocks() as app: |
|
gr.Markdown("# Sentiment Analysis") |
|
|
|
text_input = gr.Textbox(label="Enter a sentence or paragraph:", lines=10) |
|
analyze_button = gr.Button("Analyze Sentiment") |
|
output_text = gr.Textbox(label="Predicted Sentiment (1 to 5 stars):", interactive=False) |
|
|
|
analyze_button.click(sentiment, inputs=text_input, outputs=output_text) |
|
|
|
examples = [ |
|
"I love this product! It's amazing!", |
|
"This was the worst experience I've ever had." |
|
] |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=text_input, |
|
label="Try these examples" |
|
) |
|
|
|
app.launch() |
|
|