Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load the summarization model
|
5 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
6 |
+
|
7 |
+
def summarize_text(text, min_length, max_length):
|
8 |
+
summary = summarizer(text, min_length=min_length, max_length=max_length, do_sample=False)
|
9 |
+
return summary[0]['summary_text']
|
10 |
+
|
11 |
+
# Create the Gradio interface
|
12 |
+
iface = gr.Interface(
|
13 |
+
fn=summarize_text,
|
14 |
+
inputs=[
|
15 |
+
gr.Textbox(label="Enter Text", placeholder="Paste your long text here...", lines=10),
|
16 |
+
gr.Slider(minimum=10, maximum=50, label="Minimum Summary Length (tokens)", value=10),
|
17 |
+
gr.Slider(minimum=50, maximum=150, label="Maximum Summary Length (tokens)", value=100)
|
18 |
+
],
|
19 |
+
outputs=gr.Textbox(label="Summarized Text"),
|
20 |
+
title="Text Summarizer",
|
21 |
+
description="Enter a long piece of text to get a concise summary."
|
22 |
+
)
|
23 |
+
|
24 |
+
# Launch the interface
|
25 |
+
iface.launch()
|