Spaces:
Running
on
Zero
Running
on
Zero
Commit
Β·
cc25f28
1
Parent(s):
010d97b
Updated
Browse files- app.py +138 -4
- requirements.txt +6 -0
app.py
CHANGED
@@ -1,7 +1,141 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from datasets import load_dataset
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import random
|
6 |
+
import time
|
7 |
+
import spaces
|
8 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText, AutoModelForVision2Seq
|
9 |
|
|
|
|
|
10 |
|
11 |
+
dataset_vqa = load_dataset(
|
12 |
+
path="KevinNotSmile/nuscenes-qa-mini",
|
13 |
+
name="day",
|
14 |
+
split="train",
|
15 |
+
data_files="day-train/*.arrow",
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
MODEL_VERSIONS = {
|
20 |
+
"SmolVLM-256M-Instruct": "HuggingFaceTB/SmolVLM-256M-Instruct",
|
21 |
+
"SmolVLM-500M-Instruct": "HuggingFaceTB/SmolVLM-500M-Instruct",
|
22 |
+
"SmolVLM-2.2B-Instruct": "HuggingFaceTB/SmolVLM-Instruct",
|
23 |
+
"SmolVLM2-256M-Instruct": "HuggingFaceTB/SmolVLM2-256M-Instruct",
|
24 |
+
"SmolVLM2-500M-Instruct": "HuggingFaceTB/SmolVLM2-500M-Instruct",
|
25 |
+
"SmolVLM2-2.2B-Instruct": "HuggingFaceTB/SmolVLM2-2.2B-Instruct",
|
26 |
+
}
|
27 |
+
|
28 |
+
def load_model_and_processor(version):
|
29 |
+
model_name = MODEL_VERSIONS[version]
|
30 |
+
if version.startswith("SmolVLM-"):
|
31 |
+
model = AutoModelForVision2Seq.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
32 |
+
else:
|
33 |
+
model = AutoModelForImageTextToText.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
34 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
35 |
+
return model, processor
|
36 |
+
|
37 |
+
@spaces.GPU
|
38 |
+
def predict(model_version):
|
39 |
+
sample = random.choice(dataset_vqa)
|
40 |
+
|
41 |
+
model, processor = load_model_and_processor(model_version)
|
42 |
+
|
43 |
+
messages = [
|
44 |
+
{
|
45 |
+
"role": "system",
|
46 |
+
"content": "You are analyzing real-time camera feed from a self-driving car's multi-camera setup. "
|
47 |
+
+ "The position of the cameras with respect to the car is: "
|
48 |
+
+ "CAM_FRONT_LEFT, CAM_FRONT, CAM_FRONT_RIGHT, CAM_BACK_LEFT, CAM_BACK, CAM_BACK_RIGHT. "
|
49 |
+
+ "Your task is to perform precise visual analysis and answer questions about the scene."
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"role": "user",
|
53 |
+
"content": [
|
54 |
+
{"type": "image"},
|
55 |
+
{"type": "image"},
|
56 |
+
{"type": "image"},
|
57 |
+
{"type": "image"},
|
58 |
+
{"type": "image"},
|
59 |
+
{"type": "image"},
|
60 |
+
{"type": "text", "text": f"Answer the following question. {sample['question']}."},
|
61 |
+
],
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"role": "assistant",
|
65 |
+
"content": "Answer: "
|
66 |
+
}
|
67 |
+
]
|
68 |
+
|
69 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=True, do_rescale=False)
|
70 |
+
|
71 |
+
images = [
|
72 |
+
np.array(sample["CAM_FRONT_LEFT"]),
|
73 |
+
np.array(sample["CAM_FRONT"]),
|
74 |
+
np.array(sample["CAM_FRONT_RIGHT"]),
|
75 |
+
np.array(sample["CAM_BACK_LEFT"]),
|
76 |
+
np.array(sample["CAM_BACK"]),
|
77 |
+
np.array(sample["CAM_BACK_RIGHT"]),
|
78 |
+
]
|
79 |
+
|
80 |
+
inputs = processor(text=prompt, images=images, return_tensors="pt").to(device=model.device).to(torch.float16)
|
81 |
+
|
82 |
+
start = time.time()
|
83 |
+
generated_ids = model.generate(**inputs, max_new_tokens=1000)
|
84 |
+
end = time.time()
|
85 |
+
|
86 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
87 |
+
predicted_answer = generated_text.split("Assistant: ")[-1].strip()
|
88 |
+
expected_answer = sample["answer"].strip()
|
89 |
+
question = sample["question"].strip()
|
90 |
+
|
91 |
+
is_correct = predicted_answer.lower() == expected_answer.lower()
|
92 |
+
inference_time = round(end - start, 2)
|
93 |
+
|
94 |
+
return (
|
95 |
+
images[0], images[1], images[2], images[3], images[4], images[5],
|
96 |
+
question, expected_answer, predicted_answer,
|
97 |
+
"β
Correct" if is_correct else "β Incorrect",
|
98 |
+
f"{inference_time:.2f} seconds"
|
99 |
+
)
|
100 |
+
|
101 |
+
|
102 |
+
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="emerald")
|
103 |
+
with gr.Blocks(theme=theme, title="π SmolVLM VQA Demo (NuScenes Dataset)") as demo:
|
104 |
+
gr.Markdown("# SmolVLM VQA Demo (NuScenes Dataset)")
|
105 |
+
model_selector = gr.Dropdown(
|
106 |
+
choices=list(MODEL_VERSIONS.keys()),
|
107 |
+
value="2-2.2B",
|
108 |
+
label="Select Model Version"
|
109 |
+
)
|
110 |
+
|
111 |
+
predict_button = gr.Button("Predict on Random Sample")
|
112 |
+
|
113 |
+
with gr.Row():
|
114 |
+
cam_images_front = [
|
115 |
+
gr.Image(label=cam) for cam in [
|
116 |
+
"CAM_FRONT_LEFT", "CAM_FRONT", "CAM_FRONT_RIGHT"
|
117 |
+
]
|
118 |
+
]
|
119 |
+
|
120 |
+
with gr.Row():
|
121 |
+
cam_images_back = [
|
122 |
+
gr.Image(label=cam) for cam in [
|
123 |
+
"CAM_BACK_LEFT", "CAM_BACK", "CAM_BACK_RIGHT"
|
124 |
+
]
|
125 |
+
]
|
126 |
+
|
127 |
+
cam_images = cam_images_front + cam_images_back
|
128 |
+
|
129 |
+
question_text = gr.Textbox(label="Question")
|
130 |
+
expected_text = gr.Textbox(label="Expected Answer")
|
131 |
+
predicted_text = gr.Textbox(label="Predicted Answer")
|
132 |
+
correctness = gr.Textbox(label="Correct?")
|
133 |
+
timing = gr.Textbox(label="Inference Time")
|
134 |
+
|
135 |
+
predict_button.click(
|
136 |
+
fn=predict,
|
137 |
+
inputs=[model_selector],
|
138 |
+
outputs=cam_images + [question_text, expected_text, predicted_text, correctness, timing]
|
139 |
+
)
|
140 |
+
|
141 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
matplotlib
|
2 |
+
torch
|
3 |
+
transformers
|
4 |
+
datasets
|
5 |
+
num2words
|
6 |
+
accelerate
|