Spaces:
Running
Running
Update apis/chat_api.py
Browse files- apis/chat_api.py +73 -6
apis/chat_api.py
CHANGED
|
@@ -1,7 +1,14 @@
|
|
| 1 |
import argparse
|
| 2 |
import uvicorn
|
| 3 |
import sys
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import json
|
|
|
|
|
|
|
|
|
|
| 5 |
import string
|
| 6 |
import random
|
| 7 |
import base64
|
|
@@ -31,12 +38,12 @@ class ChatAPIApp:
|
|
| 31 |
)
|
| 32 |
self.setup_routes()
|
| 33 |
|
| 34 |
-
def
|
| 35 |
f = open('apis/lang_name.json', "r")
|
| 36 |
self.available_models = json.loads(f.read())
|
| 37 |
return self.available_models
|
| 38 |
|
| 39 |
-
class
|
| 40 |
from_language: str = Field(
|
| 41 |
default="auto",
|
| 42 |
description="(str) `Detect`",
|
|
@@ -51,7 +58,7 @@ class ChatAPIApp:
|
|
| 51 |
)
|
| 52 |
|
| 53 |
|
| 54 |
-
def
|
| 55 |
translator = Translator()
|
| 56 |
f = open('apis/lang_name.json', "r")
|
| 57 |
available_langs = json.loads(f.read())
|
|
@@ -73,6 +80,60 @@ class ChatAPIApp:
|
|
| 73 |
json_compatible_item_data = jsonable_encoder(item_response)
|
| 74 |
return JSONResponse(content=json_compatible_item_data)
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
class DetectLanguagePostItem(BaseModel):
|
| 78 |
input_text: str = Field(
|
|
@@ -125,15 +186,21 @@ class ChatAPIApp:
|
|
| 125 |
def setup_routes(self):
|
| 126 |
for prefix in ["", "/v1"]:
|
| 127 |
self.app.get(
|
| 128 |
-
prefix + "/
|
| 129 |
summary="Get available languages",
|
| 130 |
-
)(self.
|
| 131 |
|
| 132 |
self.app.post(
|
| 133 |
prefix + "/translate",
|
| 134 |
summary="translate text",
|
| 135 |
-
)(self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
|
|
|
| 137 |
self.app.post(
|
| 138 |
prefix + "/detect",
|
| 139 |
summary="detect language",
|
|
|
|
| 1 |
import argparse
|
| 2 |
import uvicorn
|
| 3 |
import sys
|
| 4 |
+
import os
|
| 5 |
+
import io
|
| 6 |
+
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
|
| 7 |
+
import time
|
| 8 |
import json
|
| 9 |
+
from typing import List
|
| 10 |
+
import torch
|
| 11 |
+
import logging
|
| 12 |
import string
|
| 13 |
import random
|
| 14 |
import base64
|
|
|
|
| 38 |
)
|
| 39 |
self.setup_routes()
|
| 40 |
|
| 41 |
+
def get_available_langs(self):
|
| 42 |
f = open('apis/lang_name.json', "r")
|
| 43 |
self.available_models = json.loads(f.read())
|
| 44 |
return self.available_models
|
| 45 |
|
| 46 |
+
class TranslateCompletionsPostItem(BaseModel):
|
| 47 |
from_language: str = Field(
|
| 48 |
default="auto",
|
| 49 |
description="(str) `Detect`",
|
|
|
|
| 58 |
)
|
| 59 |
|
| 60 |
|
| 61 |
+
def translate_completions(self, item: TranslateCompletionsPostItem):
|
| 62 |
translator = Translator()
|
| 63 |
f = open('apis/lang_name.json', "r")
|
| 64 |
available_langs = json.loads(f.read())
|
|
|
|
| 80 |
json_compatible_item_data = jsonable_encoder(item_response)
|
| 81 |
return JSONResponse(content=json_compatible_item_data)
|
| 82 |
|
| 83 |
+
def translate_ai_completions(self, item: TranslateCompletionsPostItem):
|
| 84 |
+
translator = Translator()
|
| 85 |
+
f = open('apis/lang_name.json', "r")
|
| 86 |
+
available_langs = json.loads(f.read())
|
| 87 |
+
from_lang = 'en'
|
| 88 |
+
to_lang = 'en'
|
| 89 |
+
for lang_item in available_langs:
|
| 90 |
+
if item.to_language == lang_item['code']:
|
| 91 |
+
to_lang = item.to_language
|
| 92 |
+
if item.from_language == lang_item['code']:
|
| 93 |
+
from_lang = item.from_language
|
| 94 |
+
|
| 95 |
+
if to_lang == 'auto':
|
| 96 |
+
to_lang = 'en'
|
| 97 |
+
|
| 98 |
+
if from_lang == 'auto':
|
| 99 |
+
from_lang = translator.detect(item.input_text).lang
|
| 100 |
+
|
| 101 |
+
if torch.cuda.is_available():
|
| 102 |
+
device = torch.device("cuda:0")
|
| 103 |
+
else:
|
| 104 |
+
device = torch.device("cpu")
|
| 105 |
+
logging.warning("GPU not found, using CPU, translation will be very slow.")
|
| 106 |
+
|
| 107 |
+
time_start = time.time()
|
| 108 |
+
|
| 109 |
+
tokenizer = M2M100Tokenizer.from_pretrained(pretrained_model, cache_dir=cache_dir)
|
| 110 |
+
model = M2M100ForConditionalGeneration.from_pretrained(
|
| 111 |
+
"facebook/m2m100_1.2B", cache_dir="models/"
|
| 112 |
+
).to(device)
|
| 113 |
+
model.eval()
|
| 114 |
+
|
| 115 |
+
tokenizer.src_lang = from_lang
|
| 116 |
+
with torch.no_grad():
|
| 117 |
+
encoded_input = tokenizer(item.input_text, return_tensors="pt").to(device)
|
| 118 |
+
generated_tokens = model.generate(
|
| 119 |
+
**encoded_input, forced_bos_token_id=tokenizer.get_lang_id(to_lang)
|
| 120 |
+
)
|
| 121 |
+
translated_text = tokenizer.batch_decode(
|
| 122 |
+
generated_tokens, skip_special_tokens=True
|
| 123 |
+
)[0]
|
| 124 |
+
|
| 125 |
+
time_end = time.time()
|
| 126 |
+
translated = translated_text
|
| 127 |
+
item_response = {
|
| 128 |
+
"from_language": from_lang,
|
| 129 |
+
"to_language": to_lang,
|
| 130 |
+
"text": item.input_text,
|
| 131 |
+
"translate": translated,
|
| 132 |
+
"start": str(time_start),
|
| 133 |
+
"end": str(time_end)
|
| 134 |
+
}
|
| 135 |
+
json_compatible_item_data = jsonable_encoder(item_response)
|
| 136 |
+
return JSONResponse(content=json_compatible_item_data)
|
| 137 |
|
| 138 |
class DetectLanguagePostItem(BaseModel):
|
| 139 |
input_text: str = Field(
|
|
|
|
| 186 |
def setup_routes(self):
|
| 187 |
for prefix in ["", "/v1"]:
|
| 188 |
self.app.get(
|
| 189 |
+
prefix + "/langs",
|
| 190 |
summary="Get available languages",
|
| 191 |
+
)(self.get_available_langs)
|
| 192 |
|
| 193 |
self.app.post(
|
| 194 |
prefix + "/translate",
|
| 195 |
summary="translate text",
|
| 196 |
+
)(self.translate_completions)
|
| 197 |
+
|
| 198 |
+
self.app.post(
|
| 199 |
+
prefix + "/translate/ai",
|
| 200 |
+
summary="translate text with ai",
|
| 201 |
+
)(self.translate_ai_completions)
|
| 202 |
|
| 203 |
+
|
| 204 |
self.app.post(
|
| 205 |
prefix + "/detect",
|
| 206 |
summary="detect language",
|