File size: 6,676 Bytes
889f722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import torch
from flask import Flask, Response, request, send_from_directory, send_file
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from threading import Thread
from sae_lens import SAE
from flask_cors import CORS
from json import load
import os

# Example config reading
from config import datasets_config, models_config

# ------------------------------------
# Global Setup: load tokenizer/models
# ------------------------------------
device = "cuda" if torch.cuda.is_available() else "cpu"
device = "mps" if torch.backends.mps.is_available() else device

# Main tokenizer (GPT-2 style). Adjust if using different.
tokenizer = AutoTokenizer.from_pretrained("gpt2")
if tokenizer.pad_token_id is None:
    tokenizer.pad_token_id = tokenizer.eos_token_id

# Original GPT-2
original_model = AutoModelForCausalLM.from_pretrained("gpt2").to(device)
original_model.eval()

# "Trained"/"biased" GPT-2 model
trained_model = AutoModelForCausalLM.from_pretrained("holistic-ai/gpt2-EMGSD").to(device)
trained_model.eval()

# ------------------------------------
# Steering Hook Setup (optional)
# ------------------------------------

# Example steering feature(s)
hooks = []
def generate_pre_hook(sae: SAE, index: int, coeff: float):
    def steering_hook(module, inputs):
        """

        Simple version of a steering hook. Adds a weighted vector

        to the residual. Customize if needed.

        """
        residual = inputs[0]
        steering_vector = sae.W_dec[index].to(device).unsqueeze(0).unsqueeze(0)
        residual = residual + coeff * steering_vector
        return (residual)
    return steering_hook
def generate_post_hook(sae: SAE, index: int, coeff: float):
    def steering_hook(module, inputs, outputs):
        """

        Simple version of a steering hook. Adds a weighted vector

        to the residual. Customize if needed.

        """
        residual = outputs[0]
        steering_vector = sae.W_dec[index].to(device).unsqueeze(0).unsqueeze(0)
        residual = residual + coeff * steering_vector
        return (residual, outputs[1], outputs[2])
    return steering_hook

def register_steering(model, model_key: str, gen_type: str, dataset_key: str, category_key: str):
    file_path = f"features/{model_key}.{dataset_key}.json"
    with open(file_path, "r") as f:
        feature_map = load(f)
        top_features = feature_map[category_key]
        if "+" in gen_type:
          coeff = 75
        elif "-" in gen_type:
          coeff = 50
        if "+" in gen_type:
          filtered_features = list(filter(lambda x: x["correlation"] > 0, top_features))
        elif "-" in gen_type:
          filtered_features = list(filter(lambda x: x["correlation"] < 0, top_features))
        if len(filtered_features) == 0:
          filtered_features = list(filter(lambda x: x["correlation"] > 0, top_features))
          coeff = 75
        top_feature = filtered_features[0]

        hook_point = "blocks.11.hook_resid_pre"
        block_idx = int(hook_point.split(".")[1])
        index = top_feature["feature_index"]

        sae, cfg_dict, sparsity = SAE.from_pretrained(
            models_config[model_key]["sae"],
            hook_point,
            device=device,
        )

    module = model.transformer.h[block_idx]
    if "pre" in hook_point:
        handle = module.register_forward_pre_hook(generate_pre_hook(sae, index, coeff))
    elif "post" in hook_point:
        handle = module.register_forward_hook(generate_post_hook(sae, index, coeff))
    hooks.append(handle)

def remove_hooks():
    for h in hooks:
        h.remove()
    hooks.clear()

# ------------------------------------
# Helper: streaming generator
# ------------------------------------
def stream_generate(model, prompt, max_new_tokens=50, temperature=1.0, top_p=0.1, repetition_penalty=10.0):
    """

    Yields tokens as they are generated in a separate thread.

    """
    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
    inputs = tokenizer(prompt, return_tensors="pt").to(device)

    generation_kwargs = dict(
        **inputs,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
        pad_token_id=tokenizer.eos_token_id,
        repetition_penalty=repetition_penalty,
    )

    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    for new_text in streamer:
        yield new_text

# ------------------------------------
# Flask App
# ------------------------------------
app = Flask(__name__)
CORS(app)

# API routes first (to avoid conflicts with static serving)
@app.route("/api/generate", methods=["POST"])
def generate():
    """

    Expects JSON like:

    {

      "model": "gpt2",

      "dataset": "emgsd",

      "category": "lgbtq+",

      "type": "original" | "origin+steer" | "trained" | "trained-steer"

    }

    Streams back the generated text token by token.

    """
    data = request.json
    model_key = data["model"]
    dataset_key = data["dataset"]
    category_key = data["category"]
    gen_type = data["type"]

    # 1. Figure out prompt from config
    try:
      prompt_text = datasets_config[dataset_key]["category"][category_key]["prompt"]
    except KeyError:
      return Response("Invalid dataset/category combination.", status=400)

    # 2. Select the model
    if "trained" in gen_type:
        chosen_model = trained_model
    else:
        chosen_model = original_model

    # 3. Steering logic if "steer" in the request type
    remove_hooks()
    if "steer" in gen_type:
        register_steering(chosen_model, model_key, gen_type, dataset_key, category_key)

    # Return a streaming response of tokens
    def token_stream():
        for token in stream_generate(chosen_model, prompt_text):
            yield token
        remove_hooks()

    return Response(token_stream(), mimetype="text/event-stream")


# Serve static files for HF Spaces (after API routes)
@app.route("/")
def serve_frontend():
    return send_file("demo/dist/index.html")

@app.route("/<path:path>")
def serve_static(path):
    if path.startswith('api/'):
        return None
    if os.path.exists(f"demo/dist/{path}"):
        return send_from_directory("demo/dist", path)
    return send_file("demo/dist/index.html")


if __name__ == "__main__":
    port = int(os.environ.get("PORT", 5174))
    app.run(host="0.0.0.0", port=port, debug=True)