import torch from transformers import PegasusForConditionalGeneration, PegasusTokenizer model_name = 'tuner007/pegasus_paraphrase' torch_device = 'cuda' if torch.cuda.is_available() else 'cpu' tokenizer = PegasusTokenizer.from_pretrained(model_name) model = PegasusForConditionalGeneration.from_pretrained(model_name).to(torch_device) def get_response(input_text,num_return_sequences): batch = tokenizer.prepare_seq2seq_batch([input_text],truncation=True,padding='longest',max_length=60, return_tensors="pt").to(torch_device) translated = model.generate(**batch,max_length=60,num_beams=10, num_return_sequences=num_return_sequences, temperature=1.5) tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True) return tgt_text from sentence_splitter import SentenceSplitter, split_text_into_sentences splitter = SentenceSplitter(language='en') def paraphraze(text): sentence_list = splitter.split(text) paraphrase = [] for i in sentence_list: a = get_response(i,1) paraphrase.append(a) paraphrase2 = [' '.join(x) for x in paraphrase] paraphrase3 = [' '.join(x for x in paraphrase2) ] paraphrased_text = str(paraphrase3).strip('[]').strip("'") return paraphrased_text import gradio as gr def summarize(text): paraphrased_text = paraphraze(text) return paraphrased_text gr.Interface(fn=summarize, inputs=gr.inputs.Textbox(lines=7, placeholder="Enter text here"), outputs=[gr.outputs.Textbox(label="Paraphrased Text")], css="footer {visibility: hidden}" examples=[["This Api is the best quillbot api alternative with no words limit." ]]).launch(inline=False)