File size: 4,064 Bytes
b7f151e
00635be
 
 
 
 
 
 
 
 
 
 
b7f151e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2ff206
b7f151e
 
 
 
 
 
 
 
 
 
 
 
 
 
d8efe75
b7f151e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d01b907
b7f151e
00635be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7f151e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import streamlit as st
st.set_page_config(
    page_title="Brain Tumor Prediction",
    page_icon="🦠",
    layout="centered",
    initial_sidebar_state="expanded",
    menu_items={
        'Get Help': 'https://iot.neu.edu.tr',
        'Report a bug': "https://iot.neu.edu.tr",
        'About': "# This is a Brain Tumor Predition App using *CNN* Deep Learning Technique."
    }
)
import json
import requests
from PIL import Image
import os

#option 2
import numpy as np
from tensorflow.keras.models import load_model
import cv2



def load_image(image):
	img = Image.open(image)
	return img

def save_uploadedfile(uploadedfile):
     with open(os.path.join("images/img",uploadedfile.name),"wb") as f:
         f.write(uploadedfile.getbuffer())
         uploaded_location = os.path.join("images/img",uploadedfile.name)
     return uploaded_location#st.success("Saved File:{} to {}".format(uploadedfile.name, uploaded_location))

def image_predict (image_file):
    model_path = 'application/models/multi_3_brainTumor89.h5'  
    h5_model = load_model(model_path)
    image = cv2.imread(image_file)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    image = cv2.resize(image, (512, 512)) 
    image = np.array(image) / 255
    image = np.expand_dims(image, axis=0)
    h5_prediction = h5_model.predict(image)
    answer = np.argmax(h5_prediction)
    classes = ['Meningioma tumor', 'Glioma tumor', 'Pituitary tumor']     
    prediction =classes[int(answer)-1]
    print ('Prediction is ', prediction )  
    print('Prediction from h5 model: {}'.format(prediction))
    return  prediction
         

st.title("🦠 Brain Tumor Prediction App from MRI Images")



col1, spacer, col2 = st.columns([6,1,3], gap="medium")

with col1:

        image = st.file_uploader("Upload CT Scan", type=["png","jpg","jpeg"])



        if image is not None:
            # To See details
            file_details = {"filename":image.name, "filetype":image.type,
                "filesize":image.size}
            st.write(file_details)

            #View Uploaded Image
            st.image(load_image(image),width=160)
            #save image to disk
            saved = save_uploadedfile(image)

            #OPTION 1 - with F-API..
            #if st.button ('Analyze'):
                #test_file = open(os.path.join("images/img", image.name), "rb")
                #response = requests.post('http://127.0.0.1:8000/predict/image', files={'file': test_file })
                #prediction = response.json()##json_object["prediction"]
                #st.write(prediction)
                #st. subheader (f"Response from BrainTumor Analyzer API = {prediction}")


            #OPTION 2 - NON API..
            if st.button ('Analyze'):
                with st.spinner('Analyzing...'):
                    prediction = image_predict(saved)
                    #st.write(prediction)
                    st. subheader (f"Image Prediction = {prediction}")
                    st.success(f"Image Prediction = {prediction}", icon="✅")

with col2:
#with st.sidebar:    
    st.write("Developed by AI & IOT Lab https://iot.neu.edu.tr by Olusegun Odewole (oooladeleodewole(at)gmail)  ")
    #st.header("Sample MRI Image")
    st.image( "https://res.cloudinary.com/segestic/image/upload/v1670497190/covid/images/Y99_ntvrog.jpg", width=200, caption='Sample Brain MRI Image')

hide_menu_and_footer_style = """
        <style>
        #MainMenu {visibility: hidden;}
        footer {visibility: hidden;}
        
        footer:after {
	content:'AI IOT app'; 
	visibility: visible;
	display: block;
	position: relative;
	#background-color: red;
	color: blue;
	padding: 5px;
	top: 2px;
	
        </style>
        """
st.markdown(hide_menu_and_footer_style, unsafe_allow_html=True)


#streamlit run app.py
#RUN BOTH for F-API...
#uvicorn application.server.main:app

#if __name__ == "__main__":
    #import uvicorn
    #uvicorn.run("application.server.main:app", host="0.0.0.0", port=8000, reload=False, log_level="debug", workers=1, limit_concurrency=1, limit_max_requests=1)