Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- config.py +65 -0
- features.py +163 -0
- modal.py +300 -0
config.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import (
|
2 |
+
AutoModelForCausalLM,
|
3 |
+
BitsAndBytesConfig,
|
4 |
+
TrainingArguments,
|
5 |
+
Trainer,
|
6 |
+
TrainerCallback,
|
7 |
+
EarlyStoppingCallback
|
8 |
+
)
|
9 |
+
# def get_training_args(output_dir):
|
10 |
+
# return TrainingArguments(
|
11 |
+
# output_dir=output_dir,
|
12 |
+
# num_train_epochs=5, # Increased from 3
|
13 |
+
# per_device_train_batch_size=4,
|
14 |
+
# per_device_eval_batch_size=4,
|
15 |
+
# gradient_accumulation_steps=8, # Increased from 4
|
16 |
+
# evaluation_strategy="steps",
|
17 |
+
# eval_steps=50, # More frequent evaluation
|
18 |
+
# save_strategy="steps",
|
19 |
+
# save_steps=50,
|
20 |
+
# logging_dir=f"{output_dir}/logs",
|
21 |
+
# logging_strategy="steps",
|
22 |
+
# logging_steps=10,
|
23 |
+
# learning_rate=5e-5, # Lower learning rate for continued training
|
24 |
+
# weight_decay=0.02, # Increased from 0.01
|
25 |
+
# warmup_ratio=0.1, # Increased from previous value
|
26 |
+
# lr_scheduler_type="cosine_with_restarts", # Changed from cosine
|
27 |
+
# load_best_model_at_end=True,
|
28 |
+
# metric_for_best_model="eval_loss",
|
29 |
+
# greater_is_better=False,
|
30 |
+
# fp16=True,
|
31 |
+
# gradient_checkpointing=True,
|
32 |
+
# gradient_checkpointing_kwargs={"use_reentrant": False},
|
33 |
+
# report_to="tensorboard",
|
34 |
+
# remove_unused_columns=False,
|
35 |
+
# optim="adamw_torch_fused", # Using fused optimizer
|
36 |
+
# max_grad_norm=0.5, # Added gradient clipping
|
37 |
+
# )
|
38 |
+
|
39 |
+
|
40 |
+
def get_training_args(output_dir):
|
41 |
+
return TrainingArguments(
|
42 |
+
output_dir=output_dir,
|
43 |
+
num_train_epochs=3, # Reduced epochs for continued training
|
44 |
+
per_device_train_batch_size=2, # Reduced batch size
|
45 |
+
per_device_eval_batch_size=2,
|
46 |
+
gradient_accumulation_steps=16, # Increased for stability
|
47 |
+
evaluation_strategy="steps",
|
48 |
+
eval_steps=25, # More frequent evaluation
|
49 |
+
save_strategy="steps",
|
50 |
+
save_steps=25,
|
51 |
+
learning_rate=1e-5, # Lower learning rate for fine-tuning
|
52 |
+
weight_decay=0.03, # Increased for better regularization
|
53 |
+
warmup_ratio=0.15, # Increased warmup
|
54 |
+
lr_scheduler_type="cosine_with_restarts",
|
55 |
+
load_best_model_at_end=True,
|
56 |
+
metric_for_best_model="eval_loss",
|
57 |
+
greater_is_better=False,
|
58 |
+
fp16=True,
|
59 |
+
gradient_checkpointing=True,
|
60 |
+
gradient_checkpointing_kwargs={"use_reentrant": False},
|
61 |
+
report_to="tensorboard",
|
62 |
+
remove_unused_columns=False,
|
63 |
+
optim="adamw_torch_fused",
|
64 |
+
max_grad_norm=0.3, # Reduced for stability
|
65 |
+
)
|
features.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""prepare_dataset_tokenise.py - Optimized for Multimodal Fine-tuning"""
|
3 |
+
|
4 |
+
import os
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, WhisperProcessor, WhisperForConditionalGeneration, PreTrainedModel,BitsAndBytesConfig
|
9 |
+
from peft import prepare_model_for_kbit_training, LoraConfig, get_peft_model, TaskType
|
10 |
+
from datasets import Dataset, DatasetDict
|
11 |
+
from tqdm import tqdm
|
12 |
+
import json
|
13 |
+
import librosa
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Union
|
16 |
+
import gc
|
17 |
+
from transformers import EarlyStoppingCallback
|
18 |
+
from torch.utils.checkpoint import checkpoint_sequential
|
19 |
+
|
20 |
+
# Initialize Whisper components for audio transcription
|
21 |
+
whisper_model_name = "openai/whisper-small"
|
22 |
+
whisper_processor = WhisperProcessor.from_pretrained(whisper_model_name)
|
23 |
+
whisper_model = WhisperForConditionalGeneration.from_pretrained(whisper_model_name)
|
24 |
+
|
25 |
+
# Load embeddings with error handling
|
26 |
+
def load_embeddings(file_path):
|
27 |
+
try:
|
28 |
+
data = np.load(file_path)
|
29 |
+
if 'image_ids' in data and 'embeddings' in data:
|
30 |
+
return {'ids': data['image_ids'], 'embeddings': data['embeddings']}
|
31 |
+
else:
|
32 |
+
raise ValueError(f"Unexpected structure in {file_path}.")
|
33 |
+
except Exception as e:
|
34 |
+
print(f"Error loading embeddings: {e}")
|
35 |
+
return None
|
36 |
+
|
37 |
+
# Process audio files
|
38 |
+
def transcribe_speech(audiopath):
|
39 |
+
try:
|
40 |
+
speech, rate = librosa.load(audiopath, sr=16000)
|
41 |
+
audio_input = whisper_processor(speech, return_tensors="pt", sampling_rate=16000)
|
42 |
+
with torch.no_grad():
|
43 |
+
generated_ids = whisper_model.generate(audio_input["input_features"])
|
44 |
+
return whisper_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
45 |
+
except Exception as e:
|
46 |
+
print(f"Error transcribing audio: {e}")
|
47 |
+
return None
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
@dataclass
|
52 |
+
class MultimodalDataCollator:
|
53 |
+
tokenizer: Any
|
54 |
+
|
55 |
+
# def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, Any]:
|
56 |
+
# batch = {"input_ids": self.tokenizer.pad({"input_ids": [f["input_ids"] for f in features]}, padding=True, return_tensors="pt")["input_ids"]}
|
57 |
+
# batch["attention_mask"] = torch.ones_like(batch["input_ids"])
|
58 |
+
# batch["labels"] = batch["input_ids"].clone()
|
59 |
+
# if "image_embeddings" in features[0]:
|
60 |
+
# batch["image_embeddings"] = torch.stack([f["image_embeddings"] for f in features])
|
61 |
+
# if "audio_embeddings" in features[0]:
|
62 |
+
# batch["audio_embeddings"] = torch.stack([f["audio_embeddings"] for f in features])
|
63 |
+
# return batch
|
64 |
+
#Updated on 30th November for managing the mismatching shape
|
65 |
+
#boolean index did not match indexed array along dimension 1; dimension is 591 but corresponding boolean dimension is 590
|
66 |
+
from dataclasses import dataclass
|
67 |
+
from typing import Any, Dict, List
|
68 |
+
import torch
|
69 |
+
|
70 |
+
@dataclass
|
71 |
+
class MultimodalDataCollator:
|
72 |
+
tokenizer: Any
|
73 |
+
|
74 |
+
def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, Any]:
|
75 |
+
# Extract input_ids, attention_mask, and labels
|
76 |
+
input_ids = [f["input_ids"] for f in features]
|
77 |
+
attention_mask = [f["attention_mask"] for f in features]
|
78 |
+
labels = [f["labels"] for f in features]
|
79 |
+
|
80 |
+
# Convert tensors to lists if they are tensors
|
81 |
+
input_ids = [ids.tolist() if isinstance(ids, torch.Tensor) else ids for ids in input_ids]
|
82 |
+
attention_mask = [mask.tolist() if isinstance(mask, torch.Tensor) else mask for mask in attention_mask]
|
83 |
+
labels = [lab.tolist() if isinstance(lab, torch.Tensor) else lab for lab in labels]
|
84 |
+
|
85 |
+
# Pad sequences to the maximum length in the batch
|
86 |
+
max_length = max(len(ids) for ids in input_ids)
|
87 |
+
padded_input_ids = [ids + [self.tokenizer.pad_token_id] * (max_length - len(ids)) for ids in input_ids]
|
88 |
+
padded_attention_mask = [mask + [0] * (max_length - len(mask)) for mask in attention_mask]
|
89 |
+
padded_labels = [lab + [-100] * (max_length - len(lab)) for lab in labels]
|
90 |
+
|
91 |
+
# Create a batch dictionary
|
92 |
+
batch = {
|
93 |
+
"input_ids": torch.tensor(padded_input_ids),
|
94 |
+
"attention_mask": torch.tensor(padded_attention_mask),
|
95 |
+
"labels": torch.tensor(padded_labels)
|
96 |
+
}
|
97 |
+
|
98 |
+
# Handle image and audio embeddings if present
|
99 |
+
if "image_embeddings" in features[0]:
|
100 |
+
batch["image_embeddings"] = torch.stack([f["image_embeddings"] for f in features])
|
101 |
+
if "audio_embeddings" in features[0]:
|
102 |
+
batch["audio_embeddings"] = torch.stack([f["audio_embeddings"] for f in features])
|
103 |
+
|
104 |
+
return batch
|
105 |
+
|
106 |
+
# Dataset preparation with better error handling and modularization
|
107 |
+
def prepare_dataset(image_embeddings_path, dataset_path, cache_dir=None):
|
108 |
+
image_embeddings = load_embeddings(image_embeddings_path)
|
109 |
+
with open(dataset_path, 'r') as f:
|
110 |
+
data = json.load(f)
|
111 |
+
processed_data = [{"conversation": item["conversations"], "image_embedding": image_embeddings['embeddings'][np.where(image_embeddings['ids'] == item['image'])[0][0]] if image_embeddings and "image" in item else None, "audio_path": item.get("audio")} for item in data]
|
112 |
+
dataset = Dataset.from_dict({"conversation": [item["conversation"] for item in processed_data], "image_embedding": [item.get("image_embedding") for item in processed_data], "audio_path": [item.get("audio_path") for item in processed_data]})
|
113 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct", trust_remote_code=True)
|
114 |
+
tokenizer.pad_token = tokenizer.eos_token
|
115 |
+
tokenizer.padding_side = "right"
|
116 |
+
# tokenizer.chat_template = """
|
117 |
+
# {% for message in messages %}
|
118 |
+
# {% if message.role == 'system' %}<|system|>{{message.content}}<|endoftext|>{% elif message.role == 'user' %}<|user|>{{message.content}}<|endoftext|>{% elif message.role == 'assistant' %}<|assistant|>{{message.content}}<|endoftext|>{% endif %}{% endfor %}
|
119 |
+
# """
|
120 |
+
tokenizer.chat_template = """
|
121 |
+
{% for message in messages %}
|
122 |
+
{% if message.role == 'system' %}<|system|>{{message.content}}<|endofsystem|>{% elif message.role == 'user' %}<|user|>{{message.content}}<|endoftext|>{% elif message.role == 'assistant' %}<|assistant|>{{message.content}}<|endoftext|>{% endif %}{% endfor %}
|
123 |
+
"""
|
124 |
+
prepared_dataset = dataset.map(lambda examples: prepare_example(examples, tokenizer), batched=True, remove_columns=dataset.column_names, batch_size=1).with_format("torch")
|
125 |
+
# dataset_dict = DatasetDict({"train": prepared_dataset.train_test_split(test_size=0.1)["train"], "test": prepared_dataset.train_test_split(test_size=0.1)["test"]})
|
126 |
+
dataset_dict = prepared_dataset.train_test_split(test_size=0.2) # Split into train and a combined validation/test set
|
127 |
+
dataset_dict["validation"] = dataset_dict["test"].train_test_split(test_size=0.5)["train"] # Split the combined set in half
|
128 |
+
dataset_dict["test"] = dataset_dict["test"].train_test_split(test_size=0.5)["test"] # Split the combined set in half
|
129 |
+
|
130 |
+
# Assuming you have your dataset in 'dataset_dict'
|
131 |
+
drive_path = "/content/drive/MyDrive/Cap_dataset" # Replace with your desired path in Google Drive
|
132 |
+
dataset_dict.save_to_disk(drive_path)
|
133 |
+
|
134 |
+
|
135 |
+
# if cache_dir:
|
136 |
+
# os.makedirs(cache_dir, exist_ok=True)
|
137 |
+
# dataset_dict.save_to_disk(cache_dir)
|
138 |
+
return dataset_dict, tokenizer
|
139 |
+
|
140 |
+
# Example preparation for dataset rows
|
141 |
+
def prepare_example(examples, tokenizer):
|
142 |
+
image_embeddings, audio_embeddings, tokenized_inputs = [], [], []
|
143 |
+
for idx, conv in enumerate(examples["conversation"]):
|
144 |
+
image_embedding = torch.tensor(examples["image_embedding"][idx]) if examples["image_embedding"][idx] is not None else None
|
145 |
+
transcription = transcribe_speech(examples["audio_path"][idx]) if "audio_path" in examples and examples["audio_path"][idx] else None
|
146 |
+
for i in range(0, len(conv), 2):
|
147 |
+
if i + 1 < len(conv):
|
148 |
+
human_msg = conv[i]["value"].replace("<image>", "").replace("<audio>", "").strip()
|
149 |
+
if transcription:
|
150 |
+
human_msg += f"\nAudio Transcription: {transcription}"
|
151 |
+
gpt_msg = conv[i + 1]["value"]
|
152 |
+
tokenized_input = tokenizer.apply_chat_template([{"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": f"{human_msg}"}, {"role": "assistant", "content": gpt_msg}], return_tensors="pt", padding=True)
|
153 |
+
tokenized_inputs.append(tokenized_input.squeeze(0))
|
154 |
+
if image_embedding is not None:
|
155 |
+
image_embeddings.append(image_embedding)
|
156 |
+
max_length = max(input.shape[0] for input in tokenized_inputs)
|
157 |
+
padded_inputs = [torch.nn.functional.pad(input, (0, max_length - input.shape[0])) for input in tokenized_inputs]
|
158 |
+
result = {"input_ids": torch.stack(padded_inputs), "attention_mask": torch.stack(padded_inputs).ne(tokenizer.pad_token_id).long(), "labels": torch.stack(padded_inputs).clone()}
|
159 |
+
if image_embeddings:
|
160 |
+
result["image_embeddings"] = torch.stack(image_embeddings)
|
161 |
+
if audio_embeddings:
|
162 |
+
result["audio_embeddings"] = torch.stack(audio_embeddings)
|
163 |
+
return result
|
modal.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, WhisperProcessor, WhisperForConditionalGeneration, PreTrainedModel,BitsAndBytesConfig
|
6 |
+
from peft import prepare_model_for_kbit_training, LoraConfig, get_peft_model, TaskType
|
7 |
+
from tqdm import tqdm
|
8 |
+
import json
|
9 |
+
import librosa
|
10 |
+
from dataclasses import dataclass
|
11 |
+
from typing import Any, Dict, List, Union
|
12 |
+
import gc
|
13 |
+
import torch.nn.functional as F
|
14 |
+
|
15 |
+
# # Define multimodal projector class
|
16 |
+
# class ProjectionBlock(nn.Module):
|
17 |
+
# def __init__(self, input_dim, output_dim):
|
18 |
+
# super().__init__()
|
19 |
+
# self.pre_norm = nn.LayerNorm(input_dim)
|
20 |
+
# self.proj = nn.Sequential(nn.Linear(input_dim, output_dim), nn.GELU(), nn.Linear(output_dim, output_dim))
|
21 |
+
|
22 |
+
# def forward(self, x):
|
23 |
+
# return self.proj(self.pre_norm(x))
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.nn as nn
|
27 |
+
|
28 |
+
class CrossAttentionBlock(nn.Module):
|
29 |
+
def __init__(self, embed_dim, num_heads=8, dropout=0.1):
|
30 |
+
super().__init__()
|
31 |
+
self.attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout)
|
32 |
+
self.norm1 = nn.LayerNorm(embed_dim)
|
33 |
+
self.norm2 = nn.LayerNorm(embed_dim)
|
34 |
+
self.ffn = nn.Sequential(
|
35 |
+
nn.Linear(embed_dim, embed_dim * 4),
|
36 |
+
nn.GELU(),
|
37 |
+
nn.Linear(embed_dim * 4, embed_dim),
|
38 |
+
nn.Dropout(dropout)
|
39 |
+
)
|
40 |
+
|
41 |
+
def forward(self, x, context):
|
42 |
+
# Self attention
|
43 |
+
attended, _ = self.attention(
|
44 |
+
query=self.norm1(x),
|
45 |
+
key=self.norm1(context),
|
46 |
+
value=self.norm1(context)
|
47 |
+
)
|
48 |
+
x = x + attended
|
49 |
+
|
50 |
+
# FFN
|
51 |
+
x = x + self.ffn(self.norm2(x))
|
52 |
+
return x
|
53 |
+
|
54 |
+
## Updated on 23rd November
|
55 |
+
class ProjectionBlock(nn.Module):
|
56 |
+
def __init__(self, input_dim, output_dim):
|
57 |
+
super().__init__()
|
58 |
+
self.pre_norm = nn.LayerNorm(input_dim)
|
59 |
+
self.proj = nn.Sequential(
|
60 |
+
nn.Linear(input_dim, output_dim * 2), # Increase intermediate dimension
|
61 |
+
nn.GELU(),
|
62 |
+
nn.Linear(output_dim * 2, output_dim) # Project to final dimension
|
63 |
+
)
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
# Add shape validation
|
67 |
+
if len(x.shape) == 2: # If input is [batch_size, features]
|
68 |
+
return self.proj(self.pre_norm(x))
|
69 |
+
elif len(x.shape) == 3: # If input is [batch_size, seq_len, features]
|
70 |
+
return self.proj(self.pre_norm(x.mean(dim=1))) # Pool sequence dimension
|
71 |
+
else:
|
72 |
+
raise ValueError(f"Unexpected input shape: {x.shape}")
|
73 |
+
|
74 |
+
##Updated on 23rd November
|
75 |
+
# class EnhancedMultimodalProjector(nn.Module):
|
76 |
+
# def __init__(self, image_input_dim, audio_input_dim, output_dim, num_heads=8):
|
77 |
+
# super().__init__()
|
78 |
+
|
79 |
+
# # Adjust projectors to match Phi-3's hidden size (1024)
|
80 |
+
# self.image_proj = ProjectionBlock(image_input_dim, output_dim)
|
81 |
+
# self.audio_proj = ProjectionBlock(audio_input_dim, output_dim)
|
82 |
+
|
83 |
+
# # Cross-attention blocks
|
84 |
+
# self.image_audio_cross_attn = CrossAttentionBlock(output_dim, num_heads)
|
85 |
+
# self.audio_image_cross_attn = CrossAttentionBlock(output_dim, num_heads)
|
86 |
+
|
87 |
+
# # Final fusion layer
|
88 |
+
# self.fusion_layer = nn.Sequential(
|
89 |
+
# nn.LayerNorm(output_dim * 2),
|
90 |
+
# nn.Linear(output_dim * 2, output_dim),
|
91 |
+
# nn.GELU(),
|
92 |
+
# nn.Linear(output_dim, output_dim)
|
93 |
+
# )
|
94 |
+
class EnhancedMultimodalProjector(nn.Module):
|
95 |
+
def __init__(self, image_input_dim, audio_input_dim=1024, output_dim=1024, num_heads=8):
|
96 |
+
super().__init__()
|
97 |
+
self.image_proj = ProjectionBlock(image_input_dim, output_dim)
|
98 |
+
self.audio_proj = ProjectionBlock(audio_input_dim, output_dim)
|
99 |
+
self.image_audio_cross_attn = CrossAttentionBlock(output_dim, num_heads)
|
100 |
+
self.audio_image_cross_attn = CrossAttentionBlock(output_dim, num_heads)
|
101 |
+
self.fusion_layer = nn.Sequential(
|
102 |
+
nn.LayerNorm(output_dim * 2),
|
103 |
+
nn.Linear(output_dim * 2, output_dim),
|
104 |
+
nn.GELU(),
|
105 |
+
nn.Linear(output_dim, output_dim)
|
106 |
+
)
|
107 |
+
|
108 |
+
def forward(self, image_embedding=None, audio_embedding=None):
|
109 |
+
# Add shape validation and adjustment
|
110 |
+
if image_embedding is not None and image_embedding.dim() < 2:
|
111 |
+
raise ValueError("Expected `image_embedding` to have at least 2 dimensions.")
|
112 |
+
if audio_embedding is not None and audio_embedding.dim() < 2:
|
113 |
+
raise ValueError("Expected `audio_embedding` to have at least 2 dimensions.")
|
114 |
+
if image_embedding is not None and len(image_embedding.shape) == 2:
|
115 |
+
image_embedding = image_embedding.unsqueeze(1) # Add sequence dimension
|
116 |
+
if audio_embedding is not None and len(audio_embedding.shape) == 2:
|
117 |
+
audio_embedding = audio_embedding.unsqueeze(1) # Add sequence dimension
|
118 |
+
|
119 |
+
# Initial projections
|
120 |
+
projected_image = self.image_proj(image_embedding) if image_embedding is not None else None
|
121 |
+
projected_audio = self.audio_proj(audio_embedding) if audio_embedding is not None else None
|
122 |
+
|
123 |
+
if projected_image is not None and projected_audio is not None:
|
124 |
+
# Ensure correct shapes for cross-attention
|
125 |
+
attended_image = self.image_audio_cross_attn(projected_image, projected_audio)
|
126 |
+
attended_audio = self.audio_image_cross_attn(projected_audio, projected_image)
|
127 |
+
|
128 |
+
# Combine the attended features
|
129 |
+
fused_features = torch.cat([attended_image, attended_audio], dim=-1)
|
130 |
+
final_output = self.fusion_layer(fused_features)
|
131 |
+
|
132 |
+
return final_output, final_output
|
133 |
+
|
134 |
+
elif projected_image is not None:
|
135 |
+
return projected_image, None
|
136 |
+
elif projected_audio is not None:
|
137 |
+
return None, projected_audio
|
138 |
+
else:
|
139 |
+
return None, None
|
140 |
+
|
141 |
+
# Update the Phi3WithProjector to use the enhanced projector
|
142 |
+
class Phi3WithProjector(PreTrainedModel):
|
143 |
+
def __init__(self, config, phi3_model, projector):
|
144 |
+
super().__init__(config)
|
145 |
+
self.phi3_model = phi3_model
|
146 |
+
self.projector = projector
|
147 |
+
self.supports_gradient_checkpointing = True
|
148 |
+
|
149 |
+
def forward(self, input_ids=None, attention_mask=None, inputs_embeds=None,
|
150 |
+
image_embeddings=None, audio_embeddings=None, labels=None, **kwargs):
|
151 |
+
if inputs_embeds is None:
|
152 |
+
inputs_embeds = self.phi3_model.get_input_embeddings()(input_ids)
|
153 |
+
|
154 |
+
# Get fused embeddings from enhanced projector
|
155 |
+
projected_features, _ = self.projector(image_embeddings, audio_embeddings)
|
156 |
+
|
157 |
+
# Concatenate embeddings if we have projected features
|
158 |
+
if projected_features is not None:
|
159 |
+
combined_embeddings = torch.cat([inputs_embeds, projected_features.unsqueeze(1)], dim=1)
|
160 |
+
# Extend attention mask
|
161 |
+
extended_attention_mask = torch.cat([
|
162 |
+
attention_mask,
|
163 |
+
torch.ones((attention_mask.shape[0], 1), device=attention_mask.device)
|
164 |
+
], dim=1)
|
165 |
+
else:
|
166 |
+
combined_embeddings = inputs_embeds
|
167 |
+
extended_attention_mask = attention_mask
|
168 |
+
|
169 |
+
# Adjust labels if needed
|
170 |
+
if labels is not None and projected_features is not None:
|
171 |
+
labels = torch.cat([
|
172 |
+
labels,
|
173 |
+
torch.full((labels.shape[0], 1), -100, dtype=labels.dtype, device=labels.device)
|
174 |
+
], dim=1)
|
175 |
+
|
176 |
+
return self.phi3_model(
|
177 |
+
inputs_embeds=combined_embeddings,
|
178 |
+
attention_mask=extended_attention_mask,
|
179 |
+
labels=labels,
|
180 |
+
**kwargs
|
181 |
+
)
|
182 |
+
|
183 |
+
|
184 |
+
class MultimodalProjector(nn.Module):
|
185 |
+
def __init__(self, image_input_dim, audio_input_dim, output_dim):
|
186 |
+
super().__init__()
|
187 |
+
self.image_proj = ProjectionBlock(image_input_dim, output_dim)
|
188 |
+
self.audio_proj = ProjectionBlock(audio_input_dim, output_dim)
|
189 |
+
|
190 |
+
def forward(self, image_embedding=None, audio_embedding=None):
|
191 |
+
projected_image = self.image_proj(image_embedding) if image_embedding is not None else None
|
192 |
+
projected_audio = self.audio_proj(audio_embedding) if audio_embedding is not None else None
|
193 |
+
return projected_image, projected_audio
|
194 |
+
|
195 |
+
|
196 |
+
|
197 |
+
class Phi3WithProjector(PreTrainedModel):
|
198 |
+
def __init__(self, config, phi3_model, projector):
|
199 |
+
super().__init__(config)
|
200 |
+
self.phi3_model = phi3_model
|
201 |
+
self.projector = projector
|
202 |
+
self.supports_gradient_checkpointing = True
|
203 |
+
|
204 |
+
|
205 |
+
def forward(self, input_ids=None, attention_mask=None, inputs_embeds=None, image_embeddings=None, audio_embeddings=None, labels=None, **kwargs):
|
206 |
+
# Use get_input_embeddings() to retrieve the embeddings layer
|
207 |
+
if inputs_embeds is None:
|
208 |
+
inputs_embeds = self.phi3_model.get_input_embeddings()(input_ids)
|
209 |
+
|
210 |
+
# Project both image and audio embeddings to the appropriate dimension
|
211 |
+
projected_image, projected_audio = self.projector(image_embeddings, audio_embeddings)
|
212 |
+
|
213 |
+
# Concatenate the embeddings
|
214 |
+
embeddings_to_concat = [inputs_embeds]
|
215 |
+
if projected_image is not None:
|
216 |
+
embeddings_to_concat.append(projected_image.unsqueeze(1))
|
217 |
+
if projected_audio is not None:
|
218 |
+
embeddings_to_concat.append(projected_audio.unsqueeze(1))
|
219 |
+
|
220 |
+
combined_embeddings = torch.cat(embeddings_to_concat, dim=1)
|
221 |
+
|
222 |
+
# Modify how the attention mask is extended
|
223 |
+
extended_attention_mask = attention_mask.clone() # Start with a copy
|
224 |
+
|
225 |
+
# Extend for image and audio, if present
|
226 |
+
if projected_image is not None:
|
227 |
+
extended_attention_mask = torch.cat([extended_attention_mask, torch.ones_like(extended_attention_mask[:, :1])], dim=1)
|
228 |
+
if projected_audio is not None:
|
229 |
+
extended_attention_mask = torch.cat([extended_attention_mask, torch.ones_like(extended_attention_mask[:, :1])], dim=1)
|
230 |
+
|
231 |
+
# Adjust labels to match the extended input sequence length
|
232 |
+
if labels is not None:
|
233 |
+
# Pad labels with -100 to ignore the added tokens in the loss calculation
|
234 |
+
num_added_tokens = sum(1 for emb in [projected_image, projected_audio] if emb is not None)
|
235 |
+
labels = torch.cat([labels, torch.full((labels.shape[0], num_added_tokens), -100, dtype=labels.dtype, device=labels.device)], dim=1)
|
236 |
+
outputs = self.phi3_model(
|
237 |
+
inputs_embeds=combined_embeddings,
|
238 |
+
attention_mask=extended_attention_mask,
|
239 |
+
labels=labels,
|
240 |
+
**kwargs
|
241 |
+
)
|
242 |
+
|
243 |
+
# Add auxiliary losses for multimodal alignment
|
244 |
+
if image_embeddings is not None or audio_embeddings is not None:
|
245 |
+
loss = outputs.loss
|
246 |
+
|
247 |
+
# Add contrastive loss for multimodal alignment
|
248 |
+
if image_embeddings is not None and audio_embeddings is not None:
|
249 |
+
img_proj, audio_proj = self.projector(image_embeddings, audio_embeddings)
|
250 |
+
contrastive_loss = self.compute_contrastive_loss(img_proj, audio_proj)
|
251 |
+
loss = loss + 0.1 * contrastive_loss # Weight the auxiliary loss
|
252 |
+
|
253 |
+
outputs.loss = loss
|
254 |
+
|
255 |
+
|
256 |
+
|
257 |
+
|
258 |
+
return outputs
|
259 |
+
|
260 |
+
def get_input_embeddings(self):
|
261 |
+
"""Returns the model's input embeddings."""
|
262 |
+
return self.phi3_model.get_input_embeddings()
|
263 |
+
|
264 |
+
def set_input_embeddings(self, value):
|
265 |
+
"""Sets the model's input embeddings."""
|
266 |
+
self.phi3_model.set_input_embeddings(value)
|
267 |
+
|
268 |
+
|
269 |
+
# Instead, use the built-in gradient checkpointing
|
270 |
+
def enable_gradient_checkpointing(self):
|
271 |
+
"""Enable gradient checkpointing for the model."""
|
272 |
+
if hasattr(self.phi3_model, "gradient_checkpointing_enable"):
|
273 |
+
self.phi3_model.gradient_checkpointing_enable()
|
274 |
+
else:
|
275 |
+
self.phi3_model.config.use_cache = False
|
276 |
+
self.phi3_model.train() # Ensure model is in training mode
|
277 |
+
|
278 |
+
def disable_gradient_checkpointing(self):
|
279 |
+
"""Disable gradient checkpointing for the model."""
|
280 |
+
if hasattr(self.phi3_model, "gradient_checkpointing_disable"):
|
281 |
+
self.phi3_model.gradient_checkpointing_disable()
|
282 |
+
else:
|
283 |
+
self.phi3_model.config.use_cache = True
|
284 |
+
|
285 |
+
def compute_contrastive_loss(self, img_features, audio_features):
|
286 |
+
# Normalize features
|
287 |
+
img_features = F.normalize(img_features, dim=-1)
|
288 |
+
audio_features = F.normalize(audio_features, dim=-1)
|
289 |
+
|
290 |
+
# Compute similarity matrix
|
291 |
+
similarity = torch.matmul(img_features, audio_features.transpose(0, 1))
|
292 |
+
|
293 |
+
# Temperature-scaled cross entropy loss
|
294 |
+
temperature = 0.07
|
295 |
+
labels = torch.arange(similarity.size(0)).to(similarity.device)
|
296 |
+
loss = F.cross_entropy(similarity / temperature, labels)
|
297 |
+
|
298 |
+
return loss
|
299 |
+
|
300 |
+
|