seemggoel's picture
Update app.py
87ce4d2 verified
import os
import torch
import gradio as gr
from PIL import Image
from transformers import CLIPProcessor, CLIPModel, AutoTokenizer, AutoModelForCausalLM
from peft import PeftConfig, PeftModel
import torch.nn as nn
import torch.nn.functional as F
import gc
import logging
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
logger.info(f"Gradio version: {gr.__version__}")
# Device setup
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.set_default_dtype(torch.float16)
logger.info(f"Using device: {DEVICE}")
class MultiModalModel(nn.Module):
def __init__(self, phi_model_name="microsoft/phi-3-mini-4k-instruct",
clip_model_name="openai/clip-vit-base-patch32", peft_model_path=None):
super().__init__()
logger.info("Loading CLIP model...")
self.clip = CLIPModel.from_pretrained(clip_model_name, torch_dtype=torch.float16).to(DEVICE)
self.clip_processor = CLIPProcessor.from_pretrained(clip_model_name, use_fast=True)
logger.info("Loading language model...")
if peft_model_path:
logger.info(f"Loading PEFT model from {peft_model_path}")
try:
config = PeftConfig.from_pretrained(peft_model_path)
base_model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map=DEVICE
)
self.phi = PeftModel.from_pretrained(base_model, peft_model_path)
self.tokenizer = AutoTokenizer.from_pretrained(peft_model_path)
except Exception as e:
logger.error(f"Failed to load PEFT model: {str(e)}", exc_info=True)
raise
else:
logger.info(f"Loading base model {phi_model_name}")
self.phi = AutoModelForCausalLM.from_pretrained(
phi_model_name,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map=DEVICE
)
self.tokenizer = AutoTokenizer.from_pretrained(phi_model_name)
self.tokenizer.add_special_tokens({"additional_special_tokens": ["[IMG]"], "pad_token": "<pad>"})
self.phi.resize_token_embeddings(len(self.tokenizer))
image_embedding_dim = self.clip.config.projection_dim
phi_hidden_size = self.phi.config.hidden_size
self.image_projection = nn.Sequential(
nn.Linear(image_embedding_dim, image_embedding_dim * 2),
nn.GELU(),
nn.Linear(image_embedding_dim * 2, phi_hidden_size),
nn.LayerNorm(phi_hidden_size),
nn.Dropout(0.1)
).to(DEVICE)
def forward(self, text_input_ids, attention_mask=None, image_embedding=None):
image_embedding = F.normalize(image_embedding, dim=-1)
projected_image = 10.0 * self.image_projection(image_embedding)
if projected_image.dim() == 2:
projected_image = projected_image.unsqueeze(1)
text_embeddings = self.phi.get_input_embeddings()(text_input_ids)
img_token_id = self.tokenizer.convert_tokens_to_ids("[IMG]")
img_token_mask = (text_input_ids == img_token_id)
fused_embeddings = text_embeddings.clone()
for i in range(fused_embeddings.shape[0]):
img_positions = img_token_mask[i].nonzero(as_tuple=True)[0]
if img_positions.numel() > 0:
fused_embeddings[i, img_positions[0], :] = projected_image[i, 0, :]
return fused_embeddings
def process_image(self, image):
image_inputs = self.clip_processor(images=image, return_tensors="pt").to(DEVICE)
with torch.no_grad():
image_embedding = self.clip.get_image_features(**image_inputs)
return image_embedding
def generate_description(self, image, prompt_template="[IMG] A detailed description of this image is:", max_tokens=100):
if isinstance(image, str):
image = Image.open(image).convert("RGB")
elif not isinstance(image, Image.Image):
image = Image.fromarray(image).convert("RGB")
image = image.resize((224, 224), Image.LANCZOS)
tokenized = self.tokenizer(prompt_template, return_tensors="pt", truncation=True, max_length=128)
text_input_ids = tokenized["input_ids"].to(DEVICE)
attention_mask = tokenized["attention_mask"].to(DEVICE)
image_embedding = self.process_image(image)
with torch.no_grad():
fused_embeddings = self(
text_input_ids=text_input_ids,
attention_mask=attention_mask,
image_embedding=image_embedding
)
generated_ids = self.phi.generate(
inputs_embeds=fused_embeddings,
attention_mask=attention_mask,
max_new_tokens=max_tokens,
do_sample=False,
repetition_penalty=1.2
)
output = self.tokenizer.decode(generated_ids[0], skip_special_tokens=True)
return output
model = None
def load_model(peft_model_path=None):
global model
if model is None:
logger.info("Loading model...")
try:
model = MultiModalModel(peft_model_path=peft_model_path)
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Failed to load model: {str(e)}", exc_info=True)
raise
gc.collect()
if DEVICE.type == "cuda":
torch.cuda.empty_cache()
return model
def generate_description(image, prompt, max_length):
logger.info("Generating description...")
try:
model = load_model(peft_model_path=os.getenv("model_V1", None))
if image is None:
logger.error("No image provided")
return "Error: No image provided"
result = model.generate_description(image, prompt, int(max_length))
logger.info("Description generated successfully")
gc.collect()
return result
except Exception as e:
logger.error(f"Error generating description: {str(e)}", exc_info=True)
return f"Error: {str(e)}"
import gradio as gr
# Gradio interface
def create_gradio_interface(generate_fn, color_theme=COLOR_THEME):
# Set color variables based on theme
if color_theme == "blue":
primary_gradient = "linear-gradient(145deg, #e0f2fe, #dbeafe)"
header_gradient = "linear-gradient(135deg, #bfdbfe, #93c5fd)" # Blue gradient for header
button_gradient = "linear-gradient(135deg, #3b82f6, #1d4ed8)"
button_hover_gradient = "linear-gradient(135deg, #2563eb, #1e40af)"
primary_color = "#1e40af"
icon_color = "#2563eb"
shadow_color = "rgba(59, 130, 246, 0.15)"
button_shadow = "rgba(29, 78, 216, 0.25)"
else:
primary_gradient = "linear-gradient(145deg, #fff7ed, #ffedd5)"
header_gradient = "linear-gradient(135deg, #fed7aa, #fdba74)" # Orange gradient for header
button_gradient = "linear-gradient(135deg, #f97316, #ea580c)"
button_hover_gradient = "linear-gradient(135deg, #ea580c, #c2410c)"
primary_color = "#9a3412"
icon_color = "#ea580c"
shadow_color = "rgba(249, 115, 22, 0.15)"
button_shadow = "rgba(234, 88, 12, 0.25)"
# Gradio interface
def create_gradio_interface(generate_fn, color_theme=COLOR_THEME):
# Set color variables based on theme
if color_theme == "blue":
primary_gradient = "linear-gradient(145deg, #e0f2fe, #dbeafe)"
header_gradient = "linear-gradient(135deg, #bfdbfe, #93c5fd)"
header_background = "#dbeafe" # Light blue for section headers
button_gradient = "linear-gradient(135deg, #3b82f6, #1d4ed8)"
button_hover_gradient = "linear-gradient(135deg, #2563eb, #1e40af)"
primary_color = "#1e40af"
icon_color = "#2563eb"
shadow_color = "rgba(59, 130, 246, 0.15)"
button_shadow = "rgba(29, 78, 216, 0.25)"
else:
primary_gradient = "linear-gradient(145deg, #fff7ed, #ffedd5)"
header_gradient = "linear-gradient(135deg, #fed7aa, #fdba74)"
header_background = "#ffedd5" # Light orange for section headers
button_gradient = "linear-gradient(135deg, #f97316, #ea580c)"
button_hover_gradient = "linear-gradient(135deg, #ea580c, #c2410c)"
primary_color = "#9a3412"
icon_color = "#ea580c"
shadow_color = "rgba(249, 115, 22, 0.15)"
button_shadow = "rgba(234, 88, 12, 0.25)"
# Custom CSS with dynamic color variables
custom_css = f"""
body {{
font-family: 'Inter', 'Segoe UI', sans-serif;
background-color: #f8fafc;
}}
.container {{
background: {primary_gradient};
border-radius: 16px;
padding: 30px;
max-width: 1200px;
margin: 0 auto;
box-shadow: 0 10px 25px {shadow_color};
}}
.app-header {{
text-align: center;
margin-bottom: 30px;
background: {header_gradient};
border-radius: 12px;
padding: 20px;
box-shadow: 0 4px 12px {shadow_color};
}}
.app-title {{
color: {primary_color};
font-size: 2.2em;
font-weight: 700;
margin-bottom: 10px;
}}
.app-description {{
color: #334155;
font-size: 1.1em;
line-height: 1.5;
max-width: 700px;
margin: 0 auto;
}}
.card {{
background: #ffffff;
border-radius: 12px;
padding: 20px;
margin-bottom: 20px;
box-shadow: 0 4px 12px rgba(0,0,0,0.05);
border: 1px solid rgba(226, 232, 240, 0.8);
transition: transform 0.2s, box-shadow 0.2s;
height: 100%;
}}
.card:hover {{
transform: translateY(-2px);
box-shadow: 0 6px 16px rgba(0,0,0,0.08);
}}
.input-label {{
color: {primary_color};
font-weight: 600;
margin-bottom: 8px;
font-size: 1.05em;
background: {header_background}; /* Add background to section headers */
padding: 5px 10px;
border-radius: 6px;
display: inline-block;
}}
.output-card {{
background: #ffffff;
border-radius: 12px;
padding: 25px;
border: 1px solid rgba(226, 232, 240, 0.8);
box-shadow: 0 4px 15px rgba(0,0,0,0.05);
height: 100%;
display: flex;
flex-direction: column;
}}
.output-content {{
font-size: 1.1em;
line-height: 1.6;
color: #1e293b;
flex-grow: 1;
}}
.btn-generate {{
background: {button_gradient} !important;
color: white !important;
border-radius: 8px !important;
padding: 12px 24px !important;
font-weight: 600 !important;
font-size: 1.05em !important;
border: none !important;
box-shadow: 0 4px 12px {button_shadow} !important;
transition: all 0.3s ease !important;
width: 100% !important;
margin-top: 15px;
}}
.btn-generate:hover {{
background: {button_hover_gradient} !important;
box-shadow: 0 6px 16px {button_shadow} !important;
transform: translateY(-2px) !important;
}}
.footer {{
text-align: center;
margin-top: 30px;
color: #64748b;
font-size: 0.9em;
}}
.model-selector {{
margin-bottom: 15px;
}}
.input-icon {{
font-size: 1.5em;
margin-right: 8px;
color: {icon_color};
}}
.divider {{
border-top: 1px solid #e2e8f0;
margin: 15px 0;
}}
.input-section {{
height: 100%;
}}
.result-heading {{
margin-bottom: 15px;
color: {primary_color};
background: {header_background}; /* Add background to result header */
padding: 5px 10px;
border-radius: 6px;
display: inline-block;
}}
"""
# Create Blocks interface with improved structure and parallel layout
with gr.Blocks(css=custom_css) as iface:
with gr.Group():
icon = "πŸ”·" if color_theme == "blue" else "πŸ”Ά"
app_name = "OmniPhi Blue" if color_theme == "blue" else "OmniPhi Orange"
gr.Markdown(
f"""
<div class="app-header">
<div class="app-title">{icon} {app_name}</div>
<div class="app-description">Advanced Multi-Modal AI with BLIP or Custom Model Integration. Upload an image and provide instructions through text or voice to generate detailed descriptions.</div>
</div>
"""
)
# Main content in a 2-column layout (inputs and output side by side)
with gr.Row():
# Left column for all inputs
with gr.Column(scale=3):
with gr.Group():
# Image upload card
with gr.Group():
gr.Markdown('<span class="input-icon">πŸ–ΌοΈ</span><span class="input-label">Upload Image</span>')
image_input = gr.Image(
type="pil",
label=None
)
# Text and voice input card
with gr.Group():
gr.Markdown('<span class="input-icon">πŸ’¬</span><span class="input-label">Text Instruction</span>')
text_input = gr.Textbox(
label=None,
placeholder="e.g., Describe this image in detail, focusing on the environment...",
lines=3
)
gr.Markdown('<div class="divider"></div>')
gr.Markdown('<span class="input-icon">πŸŽ™οΈ</span><span class="input-label">Voice Instruction (optional)</span>')
audio_input = gr.Audio(
type="microphone",
label=None
)
gr.Markdown('<div class="divider"></div>')
gr.Markdown('<span class="input-icon">βš™οΈ</span><span class="input-label">Model Selection</span>')
with gr.Group():
model_choice = gr.Radio(
choices=["BLIP", "OmniPhi"],
value="BLIP",
label=None,
interactive=True
)
submit_btn = gr.Button("Generate Description")
# Right column for output
with gr.Column(scale=2):
with gr.Group():
gr.Markdown('<span class="input-icon">✨</span><span class="input-label result-heading">Generated Description</span>')
output = gr.Textbox(
label=None,
lines=12,
placeholder="Your description will appear here after generation..."
)
# Footer
gr.Markdown(
f"""
<div class="footer">
Powered by OmniPhi Technology β€’ Upload your image and provide instructions through text or voice
</div>
"""
)
# Connect the button to the function
submit_btn.click(
fn=generate_fn,
inputs=[image_input, text_input, audio_input, model_choice],
outputs=output
)
return iface
# Main execution
if __name__ == "__main__":
# Load models
transcriber = initialize_transcriber(WHISPER_MODEL)
blip_model, blip_processor = load_blip(BLIP_MODEL, DEVICE, TORCH_DTYPE)
clip_model, clip_processor = load_clip(CLIP_MODEL, DEVICE, TORCH_DTYPE)
omniphi_model, omniphi_tokenizer = load_omniphi(CHECKPOINT_DIR, PHI_MODEL, CLIP_MODEL, DEVICE)
# Define generate function
generate_fn = lambda image, text_prompt, audio, model_choice: generate_description(
image, text_prompt, audio, model_choice, transcriber, blip_model, blip_processor,
clip_model, clip_processor, omniphi_model, omniphi_tokenizer, DEVICE
)
# Launch Gradio interface
iface = create_gradio_interface(generate_fn, color_theme=COLOR_THEME)
iface.launch(server_name="0.0.0.0", server_port=7860)