Spaces:
Runtime error
Runtime error
Duplicate from Geonmo/laion-aesthetic-predictor
Browse filesCo-authored-by: Geonmo Gu <[email protected]>
- .gitattributes +33 -0
- README.md +14 -0
- app.py +133 -0
- example1.jpg +0 -0
- example2.jpg +0 -0
- example3.jpg +0 -0
- requirements.txt +6 -0
- sac+logos+ava1-l14-linearMSE.pth +3 -0
.gitattributes
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Laion Aesthetic Predictor
|
| 3 |
+
emoji: 🎨
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: indigo
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 3.6
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
duplicated_from: Geonmo/laion-aesthetic-predictor
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
import pytorch_lightning as pl
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import clip
|
| 7 |
+
from PIL import Image, ImageFile
|
| 8 |
+
import gradio as gr
|
| 9 |
+
|
| 10 |
+
# if you changed the MLP architecture during training, change it also here:
|
| 11 |
+
class MLP(pl.LightningModule):
|
| 12 |
+
def __init__(self, input_size, xcol='emb', ycol='avg_rating'):
|
| 13 |
+
super().__init__()
|
| 14 |
+
self.input_size = input_size
|
| 15 |
+
self.xcol = xcol
|
| 16 |
+
self.ycol = ycol
|
| 17 |
+
self.layers = nn.Sequential(
|
| 18 |
+
nn.Linear(self.input_size, 1024),
|
| 19 |
+
#nn.ReLU(),
|
| 20 |
+
nn.Dropout(0.2),
|
| 21 |
+
nn.Linear(1024, 128),
|
| 22 |
+
#nn.ReLU(),
|
| 23 |
+
nn.Dropout(0.2),
|
| 24 |
+
nn.Linear(128, 64),
|
| 25 |
+
#nn.ReLU(),
|
| 26 |
+
nn.Dropout(0.1),
|
| 27 |
+
|
| 28 |
+
nn.Linear(64, 16),
|
| 29 |
+
#nn.ReLU(),
|
| 30 |
+
|
| 31 |
+
nn.Linear(16, 1)
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
def forward(self, x):
|
| 35 |
+
return self.layers(x)
|
| 36 |
+
|
| 37 |
+
def training_step(self, batch, batch_idx):
|
| 38 |
+
x = batch[self.xcol]
|
| 39 |
+
y = batch[self.ycol].reshape(-1, 1)
|
| 40 |
+
x_hat = self.layers(x)
|
| 41 |
+
loss = F.mse_loss(x_hat, y)
|
| 42 |
+
return loss
|
| 43 |
+
|
| 44 |
+
def validation_step(self, batch, batch_idx):
|
| 45 |
+
x = batch[self.xcol]
|
| 46 |
+
y = batch[self.ycol].reshape(-1, 1)
|
| 47 |
+
x_hat = self.layers(x)
|
| 48 |
+
loss = F.mse_loss(x_hat, y)
|
| 49 |
+
return loss
|
| 50 |
+
|
| 51 |
+
def configure_optimizers(self):
|
| 52 |
+
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
|
| 53 |
+
return optimizer
|
| 54 |
+
|
| 55 |
+
def normalized(a, axis=-1, order=2):
|
| 56 |
+
import numpy as np # pylint: disable=import-outside-toplevel
|
| 57 |
+
|
| 58 |
+
l2 = np.atleast_1d(np.linalg.norm(a, order, axis))
|
| 59 |
+
l2[l2 == 0] = 1
|
| 60 |
+
return a / np.expand_dims(l2, axis)
|
| 61 |
+
|
| 62 |
+
def load_models():
|
| 63 |
+
model = MLP(768)
|
| 64 |
+
|
| 65 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 66 |
+
|
| 67 |
+
s = torch.load("sac+logos+ava1-l14-linearMSE.pth", map_location=device)
|
| 68 |
+
|
| 69 |
+
model.load_state_dict(s)
|
| 70 |
+
model.to(device)
|
| 71 |
+
model.eval()
|
| 72 |
+
|
| 73 |
+
model2, preprocess = clip.load("ViT-L/14", device=device)
|
| 74 |
+
|
| 75 |
+
model_dict = {}
|
| 76 |
+
model_dict['classifier'] = model
|
| 77 |
+
model_dict['clip_model'] = model2
|
| 78 |
+
model_dict['clip_preprocess'] = preprocess
|
| 79 |
+
model_dict['device'] = device
|
| 80 |
+
|
| 81 |
+
return model_dict
|
| 82 |
+
|
| 83 |
+
def predict(image):
|
| 84 |
+
image_input = model_dict['clip_preprocess'](image).unsqueeze(0).to(model_dict['device'])
|
| 85 |
+
with torch.no_grad():
|
| 86 |
+
image_features = model_dict['clip_model'].encode_image(image_input)
|
| 87 |
+
if model_dict['device'] == 'cuda':
|
| 88 |
+
im_emb_arr = normalized(image_features.detach().cpu().numpy())
|
| 89 |
+
im_emb = torch.from_numpy(im_emb_arr).to(model_dict['device']).type(torch.cuda.FloatTensor)
|
| 90 |
+
else:
|
| 91 |
+
im_emb_arr = normalized(image_features.detach().numpy())
|
| 92 |
+
im_emb = torch.from_numpy(im_emb_arr).to(model_dict['device']).type(torch.FloatTensor)
|
| 93 |
+
|
| 94 |
+
prediction = model_dict['classifier'](im_emb)
|
| 95 |
+
score = prediction.item()
|
| 96 |
+
|
| 97 |
+
return {'aesthetic score': score}
|
| 98 |
+
|
| 99 |
+
if __name__ == '__main__':
|
| 100 |
+
print('\tinit models')
|
| 101 |
+
|
| 102 |
+
global model_dict
|
| 103 |
+
|
| 104 |
+
model_dict = load_models()
|
| 105 |
+
|
| 106 |
+
inputs = [gr.inputs.Image(type='pil', label='Image')]
|
| 107 |
+
|
| 108 |
+
outputs = gr.outputs.JSON()
|
| 109 |
+
|
| 110 |
+
title = 'image aesthetic predictor'
|
| 111 |
+
|
| 112 |
+
examples = ['example1.jpg', 'example2.jpg', 'example3.jpg']
|
| 113 |
+
|
| 114 |
+
description = """
|
| 115 |
+
# Image Aesthetic Predictor Demo
|
| 116 |
+
This model (Image Aesthetic Predictor) is trained by LAION Team. See [https://github.com/christophschuhmann/improved-aesthetic-predictor](https://github.com/christophschuhmann/improved-aesthetic-predictor)
|
| 117 |
+
1. This model is desgined by adding five MLP layers on top of (frozen) CLIP ViT-L/14 and only the MLP layers are fine-tuned with a lot of images by a regression loss term such as MSE and MAE.
|
| 118 |
+
2. Output is bounded from 0 to 10. The higher the better.
|
| 119 |
+
"""
|
| 120 |
+
|
| 121 |
+
article = "<p style='text-align: center'><a href='https://laion.ai/blog/laion-aesthetics/'>LAION aesthetics blog post</a></p>"
|
| 122 |
+
|
| 123 |
+
with gr.Blocks() as demo:
|
| 124 |
+
gr.Markdown(description)
|
| 125 |
+
with gr.Row():
|
| 126 |
+
with gr.Column():
|
| 127 |
+
image_input = gr.Image(type='pil', label='Input image')
|
| 128 |
+
submit_button = gr.Button('Submit')
|
| 129 |
+
json_output = gr.JSON(label='Output')
|
| 130 |
+
submit_button.click(predict, inputs=image_input, outputs=json_output)
|
| 131 |
+
gr.Examples(examples=examples, inputs=image_input)
|
| 132 |
+
gr.HTML(article)
|
| 133 |
+
demo.launch()
|
example1.jpg
ADDED
|
example2.jpg
ADDED
|
example3.jpg
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
ftfy
|
| 2 |
+
regex
|
| 3 |
+
git+https://github.com/openai/CLIP.git
|
| 4 |
+
gradio
|
| 5 |
+
torch
|
| 6 |
+
pytorch-lightning
|
sac+logos+ava1-l14-linearMSE.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:21dd590f3ccdc646f0d53120778b296013b096a035a2718c9cb0d511bff0f1e0
|
| 3 |
+
size 3714759
|