Spaces:
Paused
Paused
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| import warnings | |
| from typing import Any, Callable, Dict, List, Optional, Union | |
| from dataclasses import dataclass | |
| import torch | |
| from packaging import version | |
| from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection | |
| from diffusers.configuration_utils import FrozenDict | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin | |
| from diffusers.models import AutoencoderKL, ImageProjection | |
| from diffusers.schedulers import KarrasDiffusionSchedulers | |
| from diffusers.image_processor import PipelineImageInput | |
| from diffusers.models.attention_processor import FusedAttnProcessor2_0 | |
| from diffusers.utils import ( | |
| deprecate, | |
| is_accelerate_available, | |
| is_accelerate_version, | |
| logging, | |
| replace_example_docstring, | |
| ) | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
| from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
| from huggingface_hub import snapshot_download | |
| from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler | |
| from transformers import PretrainedConfig, AutoTokenizer | |
| import torch.nn as nn | |
| import os, json, PIL | |
| import numpy as np | |
| import torch.nn.functional as F | |
| from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d | |
| from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm | |
| from diffusers.utils.outputs import BaseOutput | |
| import matplotlib.pyplot as plt | |
| from foleycrafter.models.auffusion_unet import UNet2DConditionModel | |
| from foleycrafter.models.adapters.ip_adapter import VideoProjModel | |
| from foleycrafter.models.auffusion.loaders.ip_adapter import IPAdapterMixin | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| def json_dump(data_json, json_save_path): | |
| with open(json_save_path, 'w') as f: | |
| json.dump(data_json, f, indent=4) | |
| f.close() | |
| def json_load(json_path): | |
| with open(json_path, 'r') as f: | |
| data = json.load(f) | |
| f.close() | |
| return data | |
| def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str): | |
| text_encoder_config = PretrainedConfig.from_pretrained( | |
| pretrained_model_name_or_path | |
| ) | |
| model_class = text_encoder_config.architectures[0] | |
| if model_class == "CLIPTextModel": | |
| from transformers import CLIPTextModel | |
| return CLIPTextModel | |
| if "t5" in model_class.lower(): | |
| from transformers import T5EncoderModel | |
| return T5EncoderModel | |
| if "clap" in model_class.lower(): | |
| from transformers import ClapTextModelWithProjection | |
| return ClapTextModelWithProjection | |
| else: | |
| raise ValueError(f"{model_class} is not supported.") | |
| class ConditionAdapter(nn.Module): | |
| def __init__(self, config): | |
| super(ConditionAdapter, self).__init__() | |
| self.config = config | |
| self.proj = nn.Linear(self.config["condition_dim"], self.config["cross_attention_dim"]) | |
| self.norm = torch.nn.LayerNorm(self.config["cross_attention_dim"]) | |
| print(f"INITIATED: ConditionAdapter: {self.config}") | |
| def forward(self, x): | |
| x = self.proj(x) | |
| x = self.norm(x) | |
| return x | |
| def from_pretrained(cls, pretrained_model_name_or_path): | |
| config_path = os.path.join(pretrained_model_name_or_path, "config.json") | |
| ckpt_path = os.path.join(pretrained_model_name_or_path, "condition_adapter.pt") | |
| config = json.loads(open(config_path).read()) | |
| instance = cls(config) | |
| instance.load_state_dict(torch.load(ckpt_path)) | |
| print(f"LOADED: ConditionAdapter from {pretrained_model_name_or_path}") | |
| return instance | |
| def save_pretrained(self, pretrained_model_name_or_path): | |
| os.makedirs(pretrained_model_name_or_path, exist_ok=True) | |
| config_path = os.path.join(pretrained_model_name_or_path, "config.json") | |
| ckpt_path = os.path.join(pretrained_model_name_or_path, "condition_adapter.pt") | |
| json_dump(self.config, config_path) | |
| torch.save(self.state_dict(), ckpt_path) | |
| print(f"SAVED: ConditionAdapter {self.config['model_name']} to {pretrained_model_name_or_path}") | |
| def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
| """ | |
| Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | |
| Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | |
| """ | |
| std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
| std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
| # rescale the results from guidance (fixes overexposure) | |
| noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
| # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
| noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | |
| return noise_cfg | |
| LRELU_SLOPE = 0.1 | |
| MAX_WAV_VALUE = 32768.0 | |
| class AttrDict(dict): | |
| def __init__(self, *args, **kwargs): | |
| super(AttrDict, self).__init__(*args, **kwargs) | |
| self.__dict__ = self | |
| def get_config(config_path): | |
| config = json.loads(open(config_path).read()) | |
| config = AttrDict(config) | |
| return config | |
| def init_weights(m, mean=0.0, std=0.01): | |
| classname = m.__class__.__name__ | |
| if classname.find("Conv") != -1: | |
| m.weight.data.normal_(mean, std) | |
| def apply_weight_norm(m): | |
| classname = m.__class__.__name__ | |
| if classname.find("Conv") != -1: | |
| weight_norm(m) | |
| def get_padding(kernel_size, dilation=1): | |
| return int((kernel_size*dilation - dilation)/2) | |
| class ResBlock1(torch.nn.Module): | |
| def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)): | |
| super(ResBlock1, self).__init__() | |
| self.h = h | |
| self.convs1 = nn.ModuleList([ | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], | |
| padding=get_padding(kernel_size, dilation[0]))), | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], | |
| padding=get_padding(kernel_size, dilation[1]))), | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], | |
| padding=get_padding(kernel_size, dilation[2]))) | |
| ]) | |
| self.convs1.apply(init_weights) | |
| self.convs2 = nn.ModuleList([ | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
| padding=get_padding(kernel_size, 1))), | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
| padding=get_padding(kernel_size, 1))), | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
| padding=get_padding(kernel_size, 1))) | |
| ]) | |
| self.convs2.apply(init_weights) | |
| def forward(self, x): | |
| for c1, c2 in zip(self.convs1, self.convs2): | |
| xt = F.leaky_relu(x, LRELU_SLOPE) | |
| xt = c1(xt) | |
| xt = F.leaky_relu(xt, LRELU_SLOPE) | |
| xt = c2(xt) | |
| x = xt + x | |
| return x | |
| def remove_weight_norm(self): | |
| for l in self.convs1: | |
| remove_weight_norm(l) | |
| for l in self.convs2: | |
| remove_weight_norm(l) | |
| class ResBlock2(torch.nn.Module): | |
| def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)): | |
| super(ResBlock2, self).__init__() | |
| self.h = h | |
| self.convs = nn.ModuleList([ | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], | |
| padding=get_padding(kernel_size, dilation[0]))), | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], | |
| padding=get_padding(kernel_size, dilation[1]))) | |
| ]) | |
| self.convs.apply(init_weights) | |
| def forward(self, x): | |
| for c in self.convs: | |
| xt = F.leaky_relu(x, LRELU_SLOPE) | |
| xt = c(xt) | |
| x = xt + x | |
| return x | |
| def remove_weight_norm(self): | |
| for l in self.convs: | |
| remove_weight_norm(l) | |
| class Generator(torch.nn.Module): | |
| def __init__(self, h): | |
| super(Generator, self).__init__() | |
| self.h = h | |
| self.num_kernels = len(h.resblock_kernel_sizes) | |
| self.num_upsamples = len(h.upsample_rates) | |
| # self.conv_pre = weight_norm(Conv1d(80, h.upsample_initial_channel, 7, 1, padding=3)) | |
| self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3)) # change: 80 --> 512 | |
| resblock = ResBlock1 if h.resblock == '1' else ResBlock2 | |
| self._device = "cuda" if torch.cuda.is_available() else "cpu" | |
| self.ups = nn.ModuleList() | |
| for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): | |
| if (k-u) % 2 == 0: | |
| self.ups.append(weight_norm( | |
| ConvTranspose1d(h.upsample_initial_channel//(2**i), h.upsample_initial_channel//(2**(i+1)), | |
| k, u, padding=(k-u)//2))) | |
| else: | |
| self.ups.append(weight_norm( | |
| ConvTranspose1d(h.upsample_initial_channel//(2**i), h.upsample_initial_channel//(2**(i+1)), | |
| k, u, padding=(k-u)//2+1, output_padding=1))) | |
| # self.ups.append(weight_norm( | |
| # ConvTranspose1d(h.upsample_initial_channel//(2**i), h.upsample_initial_channel//(2**(i+1)), | |
| # k, u, padding=(k-u)//2))) | |
| self.resblocks = nn.ModuleList() | |
| for i in range(len(self.ups)): | |
| ch = h.upsample_initial_channel//(2**(i+1)) | |
| for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)): | |
| self.resblocks.append(resblock(h, ch, k, d)) | |
| self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) | |
| self.ups.apply(init_weights) | |
| self.conv_post.apply(init_weights) | |
| def device(self) -> torch.device: | |
| return torch.device(self._device) | |
| def dtype(self): | |
| return self.type | |
| def forward(self, x): | |
| x = self.conv_pre(x) | |
| for i in range(self.num_upsamples): | |
| x = F.leaky_relu(x, LRELU_SLOPE) | |
| x = self.ups[i](x) | |
| xs = None | |
| for j in range(self.num_kernels): | |
| if xs is None: | |
| xs = self.resblocks[i*self.num_kernels+j](x) | |
| else: | |
| xs += self.resblocks[i*self.num_kernels+j](x) | |
| x = xs / self.num_kernels | |
| x = F.leaky_relu(x) | |
| x = self.conv_post(x) | |
| x = torch.tanh(x) | |
| return x | |
| def remove_weight_norm(self): | |
| print('Removing weight norm...') | |
| for l in self.ups: | |
| remove_weight_norm(l) | |
| for l in self.resblocks: | |
| l.remove_weight_norm() | |
| remove_weight_norm(self.conv_pre) | |
| remove_weight_norm(self.conv_post) | |
| def from_pretrained(cls, pretrained_model_name_or_path, subfolder=None): | |
| if subfolder is not None: | |
| pretrained_model_name_or_path = os.path.join(pretrained_model_name_or_path, subfolder) | |
| config_path = os.path.join(pretrained_model_name_or_path, "config.json") | |
| ckpt_path = os.path.join(pretrained_model_name_or_path, "vocoder.pt") | |
| config = get_config(config_path) | |
| vocoder = cls(config) | |
| state_dict_g = torch.load(ckpt_path, map_location="cpu") | |
| vocoder.load_state_dict(state_dict_g["generator"]) | |
| vocoder.eval() | |
| vocoder.remove_weight_norm() | |
| return vocoder | |
| def inference(self, mels, lengths=None): | |
| self.eval() | |
| with torch.no_grad(): | |
| wavs = self(mels).squeeze(1) | |
| wavs = (wavs.cpu().numpy() * MAX_WAV_VALUE).astype("int16") | |
| if lengths is not None: | |
| wavs = wavs[:, :lengths] | |
| return wavs | |
| def normalize_spectrogram( | |
| spectrogram: torch.Tensor, | |
| max_value: float = 200, | |
| min_value: float = 1e-5, | |
| power: float = 1., | |
| ) -> torch.Tensor: | |
| # Rescale to 0-1 | |
| max_value = np.log(max_value) # 5.298317366548036 | |
| min_value = np.log(min_value) # -11.512925464970229 | |
| spectrogram = torch.clamp(spectrogram, min=min_value, max=max_value) | |
| data = (spectrogram - min_value) / (max_value - min_value) | |
| # Apply the power curve | |
| data = torch.pow(data, power) | |
| # 1D -> 3D | |
| data = data.repeat(3, 1, 1) | |
| # Flip Y axis: image origin at the top-left corner, spectrogram origin at the bottom-left corner | |
| data = torch.flip(data, [1]) | |
| return data | |
| def denormalize_spectrogram( | |
| data: torch.Tensor, | |
| max_value: float = 200, | |
| min_value: float = 1e-5, | |
| power: float = 1, | |
| ) -> torch.Tensor: | |
| assert len(data.shape) == 3, "Expected 3 dimensions, got {}".format(len(data.shape)) | |
| max_value = np.log(max_value) | |
| min_value = np.log(min_value) | |
| # Flip Y axis: image origin at the top-left corner, spectrogram origin at the bottom-left corner | |
| data = torch.flip(data, [1]) | |
| if data.shape[0] == 1: | |
| data = data.repeat(3, 1, 1) | |
| assert data.shape[0] == 3, "Expected 3 channels, got {}".format(data.shape[0]) | |
| data = data[0] | |
| # Reverse the power curve | |
| data = torch.pow(data, 1 / power) | |
| # Rescale to max value | |
| spectrogram = data * (max_value - min_value) + min_value | |
| return spectrogram | |
| def pt_to_numpy(images: torch.FloatTensor) -> np.ndarray: | |
| """ | |
| Convert a PyTorch tensor to a NumPy image. | |
| """ | |
| images = images.cpu().permute(0, 2, 3, 1).float().numpy() | |
| return images | |
| def numpy_to_pil(images: np.ndarray) -> PIL.Image.Image: | |
| """ | |
| Convert a numpy image or a batch of images to a PIL image. | |
| """ | |
| if images.ndim == 3: | |
| images = images[None, ...] | |
| images = (images * 255).round().astype("uint8") | |
| if images.shape[-1] == 1: | |
| # special case for grayscale (single channel) images | |
| pil_images = [PIL.Image.fromarray(image.squeeze(), mode="L") for image in images] | |
| else: | |
| pil_images = [PIL.Image.fromarray(image) for image in images] | |
| return pil_images | |
| def image_add_color(spec_img): | |
| cmap = plt.get_cmap('viridis') | |
| cmap_r = cmap.reversed() | |
| image = cmap(np.array(spec_img)[:,:,0])[:, :, :3] # 省略透明度通道 | |
| image = (image - image.min()) / (image.max() - image.min()) | |
| image = PIL.Image.fromarray(np.uint8(image*255)) | |
| return image | |
| class PipelineOutput(BaseOutput): | |
| """ | |
| Output class for audio pipelines. | |
| Args: | |
| audios (`np.ndarray`) | |
| List of denoised audio samples of a NumPy array of shape `(batch_size, num_channels, sample_rate)`. | |
| """ | |
| images: Union[List[PIL.Image.Image], np.ndarray] | |
| spectrograms: Union[List[np.ndarray], np.ndarray] | |
| audios: Union[List[np.ndarray], np.ndarray] | |
| class AuffusionPipeline(DiffusionPipeline): | |
| r""" | |
| Pipeline for text-to-image generation using Stable Diffusion. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| In addition the pipeline inherits the following loading methods: | |
| - *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`] | |
| - *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`] | |
| - *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`] | |
| as well as the following saving methods: | |
| - *LoRA*: [`loaders.LoraLoaderMixin.save_lora_weights`] | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`CLIPTextModel`]): | |
| Frozen text-encoder. Stable Diffusion uses the text portion of | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
| the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
| tokenizer (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
| [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
| safety_checker ([`StableDiffusionSafetyChecker`]): | |
| Classification module that estimates whether generated images could be considered offensive or harmful. | |
| Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. | |
| feature_extractor ([`CLIPImageProcessor`]): | |
| Model that extracts features from generated images to be used as inputs for the `safety_checker`. | |
| """ | |
| _optional_components = ["safety_checker", "feature_extractor", "text_encoder_list", "tokenizer_list", "adapter_list", "vocoder"] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| unet: UNet2DConditionModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| safety_checker: StableDiffusionSafetyChecker, | |
| feature_extractor: CLIPImageProcessor, | |
| text_encoder_list: Optional[List[Callable]] = None, | |
| tokenizer_list: Optional[List[Callable]] = None, | |
| vocoder: Generator = None, | |
| requires_safety_checker: bool = False, | |
| adapter_list: Optional[List[Callable]] = None, | |
| tokenizer_model_max_length: Optional[int] = 77, # 77 is the default value for the CLIPTokenizer(and set for other models) | |
| ): | |
| super().__init__() | |
| self.text_encoder_list = text_encoder_list | |
| self.tokenizer_list = tokenizer_list | |
| self.vocoder = vocoder | |
| self.adapter_list = adapter_list | |
| self.tokenizer_model_max_length = tokenizer_model_max_length | |
| self.register_modules( | |
| vae=vae, | |
| unet=unet, | |
| scheduler=scheduler, | |
| safety_checker=safety_checker, | |
| feature_extractor=feature_extractor, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| self.register_to_config(requires_safety_checker=requires_safety_checker) | |
| def from_pretrained( | |
| cls, | |
| pretrained_model_name_or_path: str = "auffusion/auffusion-full-no-adapter", | |
| dtype: torch.dtype = torch.float16, | |
| device: str = "cuda", | |
| ): | |
| if not os.path.isdir(pretrained_model_name_or_path): | |
| pretrained_model_name_or_path = snapshot_download(pretrained_model_name_or_path) | |
| vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae") | |
| unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet") | |
| feature_extractor = CLIPImageProcessor.from_pretrained(pretrained_model_name_or_path, subfolder="feature_extractor") | |
| scheduler = PNDMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler") | |
| vocoder = Generator.from_pretrained(pretrained_model_name_or_path, subfolder="vocoder").to(device, dtype) | |
| text_encoder_list, tokenizer_list, adapter_list = [], [], [] | |
| condition_json_path = os.path.join(pretrained_model_name_or_path, "condition_config.json") | |
| condition_json_list = json.loads(open(condition_json_path).read()) | |
| for i, condition_item in enumerate(condition_json_list): | |
| # Load Condition Adapter | |
| text_encoder_path = os.path.join(pretrained_model_name_or_path, condition_item["text_encoder_name"]) | |
| tokenizer = AutoTokenizer.from_pretrained(text_encoder_path) | |
| tokenizer_list.append(tokenizer) | |
| text_encoder_cls = import_model_class_from_model_name_or_path(text_encoder_path) | |
| text_encoder = text_encoder_cls.from_pretrained(text_encoder_path).to(device, dtype) | |
| text_encoder_list.append(text_encoder) | |
| print(f"LOADING CONDITION ENCODER {i}") | |
| # Load Condition Adapter | |
| adapter_path = os.path.join(pretrained_model_name_or_path, condition_item["condition_adapter_name"]) | |
| adapter = ConditionAdapter.from_pretrained(adapter_path).to(device, dtype) | |
| adapter_list.append(adapter) | |
| print(f"LOADING CONDITION ADAPTER {i}") | |
| pipeline = cls( | |
| vae=vae, | |
| unet=unet, | |
| text_encoder_list=text_encoder_list, | |
| tokenizer_list=tokenizer_list, | |
| vocoder=vocoder, | |
| adapter_list=adapter_list, | |
| scheduler=scheduler, | |
| safety_checker=None, | |
| feature_extractor=feature_extractor, | |
| ) | |
| pipeline = pipeline.to(device, dtype) | |
| return pipeline | |
| def to(self, device, dtype=None): | |
| super().to(device, dtype) | |
| self.vocoder.to(device, dtype) | |
| for text_encoder in self.text_encoder_list: | |
| text_encoder.to(device, dtype) | |
| if self.adapter_list is not None: | |
| for adapter in self.adapter_list: | |
| adapter.to(device, dtype) | |
| return self | |
| def enable_vae_slicing(self): | |
| r""" | |
| Enable sliced VAE decoding. | |
| When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several | |
| steps. This is useful to save some memory and allow larger batch sizes. | |
| """ | |
| self.vae.enable_slicing() | |
| def disable_vae_slicing(self): | |
| r""" | |
| Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_slicing() | |
| def enable_vae_tiling(self): | |
| r""" | |
| Enable tiled VAE decoding. | |
| When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in | |
| several steps. This is useful to save a large amount of memory and to allow the processing of larger images. | |
| """ | |
| self.vae.enable_tiling() | |
| def disable_vae_tiling(self): | |
| r""" | |
| Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_tiling() | |
| def enable_sequential_cpu_offload(self, gpu_id=0): | |
| r""" | |
| Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, | |
| text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a | |
| `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. | |
| Note that offloading happens on a submodule basis. Memory savings are higher than with | |
| `enable_model_cpu_offload`, but performance is lower. | |
| """ | |
| if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"): | |
| from accelerate import cpu_offload | |
| else: | |
| raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| if self.device.type != "cpu": | |
| self.to("cpu", silence_dtype_warnings=True) | |
| torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
| for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
| cpu_offload(cpu_offloaded_model, device) | |
| if self.safety_checker is not None: | |
| cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True) | |
| def enable_model_cpu_offload(self, gpu_id=0): | |
| r""" | |
| Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | |
| to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | |
| method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | |
| `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | |
| """ | |
| if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | |
| from accelerate import cpu_offload_with_hook | |
| else: | |
| raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| if self.device.type != "cpu": | |
| self.to("cpu", silence_dtype_warnings=True) | |
| torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
| hook = None | |
| for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]: | |
| _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) | |
| if self.safety_checker is not None: | |
| _, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook) | |
| # We'll offload the last model manually. | |
| self.final_offload_hook = hook | |
| def _execution_device(self): | |
| r""" | |
| Returns the device on which the pipeline's models will be executed. After calling | |
| `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | |
| hooks. | |
| """ | |
| if not hasattr(self.unet, "_hf_hook"): | |
| return self.device | |
| for module in self.unet.modules(): | |
| if ( | |
| hasattr(module, "_hf_hook") | |
| and hasattr(module._hf_hook, "execution_device") | |
| and module._hf_hook.execution_device is not None | |
| ): | |
| return torch.device(module._hf_hook.execution_device) | |
| return self.device | |
| def _encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt=None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| ): | |
| assert len(self.text_encoder_list) == len(self.tokenizer_list), "Number of text_encoders must match number of tokenizers" | |
| if self.adapter_list is not None: | |
| assert len(self.text_encoder_list) == len(self.adapter_list), "Number of text_encoders must match number of adapters" | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| def get_prompt_embeds(prompt_list, device): | |
| if isinstance(prompt_list, str): | |
| prompt_list = [prompt_list] | |
| prompt_embeds_list = [] | |
| for prompt in prompt_list: | |
| encoder_hidden_states_list = [] | |
| # Generate condition embedding | |
| for j in range(len(self.text_encoder_list)): | |
| # get condition embedding using condition encoder | |
| input_ids = self.tokenizer_list[j](prompt, return_tensors="pt").input_ids.to(device) | |
| cond_embs = self.text_encoder_list[j](input_ids).last_hidden_state # [bz, text_len, text_dim] | |
| # padding to max_length | |
| if cond_embs.shape[1] < self.tokenizer_model_max_length: | |
| cond_embs = torch.functional.F.pad(cond_embs, (0, 0, 0, self.tokenizer_model_max_length - cond_embs.shape[1]), value=0) | |
| else: | |
| cond_embs = cond_embs[:, :self.tokenizer_model_max_length, :] | |
| # use condition adapter | |
| if self.adapter_list is not None: | |
| cond_embs = self.adapter_list[j](cond_embs) | |
| encoder_hidden_states_list.append(cond_embs) | |
| prompt_embeds = torch.cat(encoder_hidden_states_list, dim=1) | |
| prompt_embeds_list.append(prompt_embeds) | |
| prompt_embeds = torch.cat(prompt_embeds_list, dim=0) | |
| return prompt_embeds | |
| if prompt_embeds is None: | |
| prompt_embeds = get_prompt_embeds(prompt, device) | |
| prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| if negative_prompt is None: | |
| negative_prompt_embeds = torch.zeros_like(prompt_embeds).to(dtype=prompt_embeds.dtype, device=device) | |
| elif prompt is not None and type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| negative_prompt = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| negative_prompt_embeds = get_prompt_embeds(negative_prompt, device) | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| return prompt_embeds | |
| def run_safety_checker(self, image, device, dtype): | |
| if self.safety_checker is None: | |
| has_nsfw_concept = None | |
| else: | |
| if torch.is_tensor(image): | |
| feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") | |
| else: | |
| feature_extractor_input = self.image_processor.numpy_to_pil(image) | |
| safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) | |
| image, has_nsfw_concept = self.safety_checker( | |
| images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
| ) | |
| return image, has_nsfw_concept | |
| def decode_latents(self, latents): | |
| warnings.warn( | |
| "The decode_latents method is deprecated and will be removed in a future version. Please" | |
| " use VaeImageProcessor instead", | |
| FutureWarning, | |
| ) | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = (image / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
| image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
| return image | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| height, | |
| width, | |
| callback_steps, | |
| negative_prompt=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| ): | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | |
| shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = torch.randn(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| height: Optional[int] = 256, | |
| width: Optional[int] = 1024, | |
| num_inference_steps: int = 100, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pt", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| guidance_rescale: float = 0.0, | |
| duration: Optional[float] = 10, | |
| ): | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| audio_length = int(duration * 16000) | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds | |
| ) | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| prompt_embeds = self._encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds | |
| ) | |
| # 4. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| if do_classifier_free_guidance and guidance_rescale > 0.0: | |
| # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
| noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| if not output_type == "latent": | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
| image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
| else: | |
| image = latents | |
| has_nsfw_concept = None | |
| if has_nsfw_concept is None: | |
| do_denormalize = [True] * image.shape[0] | |
| else: | |
| do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
| image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
| # Offload last model to CPU | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.final_offload_hook.offload() | |
| # Generate audio | |
| spectrograms, audios = [], [] | |
| for img in image: | |
| spectrogram = denormalize_spectrogram(img) | |
| audio = self.vocoder.inference(spectrogram, lengths=audio_length)[0] | |
| audios.append(audio) | |
| spectrograms.append(spectrogram) | |
| # Convert to PIL | |
| images = pt_to_numpy(image) | |
| images = numpy_to_pil(images) | |
| images = [image_add_color(image) for image in images] | |
| if not return_dict: | |
| return (images, audios, spectrograms) | |
| return PipelineOutput(images=images, audios=audios, spectrograms=spectrograms) | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| **kwargs, | |
| ): | |
| """ | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, | |
| `timesteps` must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default | |
| timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` | |
| must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class AuffusionNoAdapterPipeline( | |
| DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin | |
| ): | |
| r""" | |
| Pipeline for text-to-image generation using Stable Diffusion. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
| implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
| The pipeline also inherits the following loading methods: | |
| - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | |
| - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights | |
| - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights | |
| - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files | |
| - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | |
| text_encoder ([`~transformers.CLIPTextModel`]): | |
| Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
| tokenizer ([`~transformers.CLIPTokenizer`]): | |
| A `CLIPTokenizer` to tokenize text. | |
| unet ([`UNet2DConditionModel`]): | |
| A `UNet2DConditionModel` to denoise the encoded image latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
| [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
| safety_checker ([`StableDiffusionSafetyChecker`]): | |
| Classification module that estimates whether generated images could be considered offensive or harmful. | |
| Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details | |
| about a model's potential harms. | |
| feature_extractor ([`~transformers.CLIPImageProcessor`]): | |
| A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. | |
| """ | |
| model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" | |
| _optional_components = ["safety_checker", "feature_extractor", "image_encoder"] | |
| _exclude_from_cpu_offload = ["safety_checker"] | |
| _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| safety_checker: StableDiffusionSafetyChecker, | |
| feature_extractor: CLIPImageProcessor, | |
| image_encoder: CLIPVisionModelWithProjection = None, | |
| requires_safety_checker: bool = True, | |
| ): | |
| super().__init__() | |
| if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: | |
| deprecation_message = ( | |
| f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" | |
| f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " | |
| "to update the config accordingly as leaving `steps_offset` might led to incorrect results" | |
| " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," | |
| " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" | |
| " file" | |
| ) | |
| deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) | |
| new_config = dict(scheduler.config) | |
| new_config["steps_offset"] = 1 | |
| scheduler._internal_dict = FrozenDict(new_config) | |
| if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: | |
| deprecation_message = ( | |
| f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." | |
| " `clip_sample` should be set to False in the configuration file. Please make sure to update the" | |
| " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" | |
| " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" | |
| " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" | |
| ) | |
| deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) | |
| new_config = dict(scheduler.config) | |
| new_config["clip_sample"] = False | |
| scheduler._internal_dict = FrozenDict(new_config) | |
| if safety_checker is None and requires_safety_checker: | |
| logger.warning( | |
| f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | |
| " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | |
| " results in services or applications open to the public. Both the diffusers team and Hugging Face" | |
| " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | |
| " it only for use-cases that involve analyzing network behavior or auditing its results. For more" | |
| " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | |
| ) | |
| if safety_checker is not None and feature_extractor is None: | |
| raise ValueError( | |
| "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | |
| " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | |
| ) | |
| is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( | |
| version.parse(unet.config._diffusers_version).base_version | |
| ) < version.parse("0.9.0.dev0") | |
| is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 | |
| if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: | |
| deprecation_message = ( | |
| "The configuration file of the unet has set the default `sample_size` to smaller than" | |
| " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" | |
| " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" | |
| " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" | |
| " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" | |
| " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" | |
| " in the config might lead to incorrect results in future versions. If you have downloaded this" | |
| " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" | |
| " the `unet/config.json` file" | |
| ) | |
| deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) | |
| new_config = dict(unet.config) | |
| new_config["sample_size"] = 64 | |
| unet._internal_dict = FrozenDict(new_config) | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=scheduler, | |
| safety_checker=safety_checker, | |
| feature_extractor=feature_extractor, | |
| image_encoder=image_encoder, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| self.register_to_config(requires_safety_checker=requires_safety_checker) | |
| def enable_vae_slicing(self): | |
| r""" | |
| Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
| compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
| """ | |
| self.vae.enable_slicing() | |
| def disable_vae_slicing(self): | |
| r""" | |
| Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_slicing() | |
| def enable_vae_tiling(self): | |
| r""" | |
| Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
| compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
| processing larger images. | |
| """ | |
| self.vae.enable_tiling() | |
| def disable_vae_tiling(self): | |
| r""" | |
| Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_tiling() | |
| def _encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt=None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| lora_scale: Optional[float] = None, | |
| **kwargs, | |
| ): | |
| deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." | |
| deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) | |
| prompt_embeds_tuple = self.encode_prompt( | |
| prompt=prompt, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| lora_scale=lora_scale, | |
| **kwargs, | |
| ) | |
| # concatenate for backwards comp | |
| prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) | |
| return prompt_embeds | |
| def encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt=None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| lora_scale: Optional[float] = None, | |
| clip_skip: Optional[int] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| lora_scale (`float`, *optional*): | |
| A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
| clip_skip (`int`, *optional*): | |
| Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
| the output of the pre-final layer will be used for computing the prompt embeddings. | |
| """ | |
| # set lora scale so that monkey patched LoRA | |
| # function of text encoder can correctly access it | |
| if lora_scale is not None and isinstance(self, LoraLoaderMixin): | |
| self._lora_scale = lora_scale | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| # textual inversion: procecss multi-vector tokens if necessary | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = self.tokenizer.batch_decode( | |
| untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
| ) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| if clip_skip is None: | |
| prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | |
| prompt_embeds = prompt_embeds[0] | |
| else: | |
| prompt_embeds = self.text_encoder( | |
| text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True | |
| ) | |
| # Access the `hidden_states` first, that contains a tuple of | |
| # all the hidden states from the encoder layers. Then index into | |
| # the tuple to access the hidden states from the desired layer. | |
| prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] | |
| # We also need to apply the final LayerNorm here to not mess with the | |
| # representations. The `last_hidden_states` that we typically use for | |
| # obtaining the final prompt representations passes through the LayerNorm | |
| # layer. | |
| prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) | |
| if self.text_encoder is not None: | |
| prompt_embeds_dtype = self.text_encoder.dtype | |
| elif self.unet is not None: | |
| prompt_embeds_dtype = self.unet.dtype | |
| else: | |
| prompt_embeds_dtype = prompt_embeds.dtype | |
| prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif prompt is not None and type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| # textual inversion: procecss multi-vector tokens if necessary | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| negative_prompt_embeds = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds[0] | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| return prompt_embeds, negative_prompt_embeds | |
| def prepare_ip_adapter_image_embeds( | |
| self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance | |
| ): | |
| if ip_adapter_image_embeds is None: | |
| if not isinstance(ip_adapter_image, list): | |
| ip_adapter_image = [ip_adapter_image] | |
| if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): | |
| raise ValueError( | |
| f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." | |
| ) | |
| image_embeds = [] | |
| for single_ip_adapter_image, image_proj_layer in zip( | |
| ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers | |
| ): | |
| output_hidden_state = not isinstance(image_proj_layer, ImageProjection) | |
| single_image_embeds, single_negative_image_embeds = self.encode_image( | |
| single_ip_adapter_image, device, 1, output_hidden_state | |
| ) | |
| single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0) | |
| single_negative_image_embeds = torch.stack( | |
| [single_negative_image_embeds] * num_images_per_prompt, dim=0 | |
| ) | |
| if do_classifier_free_guidance: | |
| single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) | |
| single_image_embeds = single_image_embeds.to(device) | |
| image_embeds.append(single_image_embeds) | |
| else: | |
| repeat_dims = [1] | |
| image_embeds = [] | |
| for single_image_embeds in ip_adapter_image_embeds: | |
| if do_classifier_free_guidance: | |
| single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) | |
| single_image_embeds = single_image_embeds.repeat( | |
| num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) | |
| ) | |
| single_negative_image_embeds = single_negative_image_embeds.repeat( | |
| num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:])) | |
| ) | |
| single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) | |
| else: | |
| single_image_embeds = single_image_embeds.repeat( | |
| num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) | |
| ) | |
| image_embeds.append(single_image_embeds) | |
| return image_embeds | |
| def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| if not isinstance(image, torch.Tensor): | |
| image = self.feature_extractor(image, return_tensors="pt").pixel_values | |
| image = image.to(device=device, dtype=dtype) | |
| if output_hidden_states: | |
| image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] | |
| image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | |
| uncond_image_enc_hidden_states = self.image_encoder( | |
| torch.zeros_like(image), output_hidden_states=True | |
| ).hidden_states[-2] | |
| uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( | |
| num_images_per_prompt, dim=0 | |
| ) | |
| return image_enc_hidden_states, uncond_image_enc_hidden_states | |
| else: | |
| image_embeds = self.image_encoder(image).image_embeds | |
| image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
| uncond_image_embeds = torch.zeros_like(image_embeds) | |
| return image_embeds, uncond_image_embeds | |
| def run_safety_checker(self, image, device, dtype): | |
| if self.safety_checker is None: | |
| has_nsfw_concept = None | |
| else: | |
| if torch.is_tensor(image): | |
| feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") | |
| else: | |
| feature_extractor_input = self.image_processor.numpy_to_pil(image) | |
| safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) | |
| image, has_nsfw_concept = self.safety_checker( | |
| images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
| ) | |
| return image, has_nsfw_concept | |
| def decode_latents(self, latents): | |
| deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" | |
| deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = (image / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
| image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
| return image | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| height, | |
| width, | |
| callback_steps, | |
| negative_prompt=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| callback_on_step_end_tensor_inputs=None, | |
| ): | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | |
| shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): | |
| r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497. | |
| The suffixes after the scaling factors represent the stages where they are being applied. | |
| Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values | |
| that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. | |
| Args: | |
| s1 (`float`): | |
| Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to | |
| mitigate "oversmoothing effect" in the enhanced denoising process. | |
| s2 (`float`): | |
| Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to | |
| mitigate "oversmoothing effect" in the enhanced denoising process. | |
| b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. | |
| b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. | |
| """ | |
| if not hasattr(self, "unet"): | |
| raise ValueError("The pipeline must have `unet` for using FreeU.") | |
| self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2) | |
| def disable_freeu(self): | |
| """Disables the FreeU mechanism if enabled.""" | |
| self.unet.disable_freeu() | |
| # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.fuse_qkv_projections | |
| def fuse_qkv_projections(self, unet: bool = True, vae: bool = True): | |
| """ | |
| Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, | |
| key, value) are fused. For cross-attention modules, key and value projection matrices are fused. | |
| <Tip warning={true}> | |
| This API is 🧪 experimental. | |
| </Tip> | |
| Args: | |
| unet (`bool`, defaults to `True`): To apply fusion on the UNet. | |
| vae (`bool`, defaults to `True`): To apply fusion on the VAE. | |
| """ | |
| self.fusing_unet = False | |
| self.fusing_vae = False | |
| if unet: | |
| self.fusing_unet = True | |
| self.unet.fuse_qkv_projections() | |
| self.unet.set_attn_processor(FusedAttnProcessor2_0()) | |
| if vae: | |
| if not isinstance(self.vae, AutoencoderKL): | |
| raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.") | |
| self.fusing_vae = True | |
| self.vae.fuse_qkv_projections() | |
| self.vae.set_attn_processor(FusedAttnProcessor2_0()) | |
| # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.unfuse_qkv_projections | |
| def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True): | |
| """Disable QKV projection fusion if enabled. | |
| <Tip warning={true}> | |
| This API is 🧪 experimental. | |
| </Tip> | |
| Args: | |
| unet (`bool`, defaults to `True`): To apply fusion on the UNet. | |
| vae (`bool`, defaults to `True`): To apply fusion on the VAE. | |
| """ | |
| if unet: | |
| if not self.fusing_unet: | |
| logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.") | |
| else: | |
| self.unet.unfuse_qkv_projections() | |
| self.fusing_unet = False | |
| if vae: | |
| if not self.fusing_vae: | |
| logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.") | |
| else: | |
| self.vae.unfuse_qkv_projections() | |
| self.fusing_vae = False | |
| # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding | |
| def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): | |
| """ | |
| See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 | |
| Args: | |
| timesteps (`torch.Tensor`): | |
| generate embedding vectors at these timesteps | |
| embedding_dim (`int`, *optional*, defaults to 512): | |
| dimension of the embeddings to generate | |
| dtype: | |
| data type of the generated embeddings | |
| Returns: | |
| `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)` | |
| """ | |
| assert len(w.shape) == 1 | |
| w = w * 1000.0 | |
| half_dim = embedding_dim // 2 | |
| emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) | |
| emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) | |
| emb = w.to(dtype)[:, None] * emb[None, :] | |
| emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
| if embedding_dim % 2 == 1: # zero pad | |
| emb = torch.nn.functional.pad(emb, (0, 1)) | |
| assert emb.shape == (w.shape[0], embedding_dim) | |
| return emb | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def guidance_rescale(self): | |
| return self._guidance_rescale | |
| def clip_skip(self): | |
| return self._clip_skip | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| def do_classifier_free_guidance(self): | |
| return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None | |
| def cross_attention_kwargs(self): | |
| return self._cross_attention_kwargs | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def interrupt(self): | |
| return self._interrupt | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| timesteps: List[int] = None, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| guidance_rescale: float = 0.0, | |
| clip_skip: Optional[int] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| **kwargs, | |
| ): | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
| height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
| in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
| passed will be used. Must be in descending order. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
| pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
| to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor is generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
| provided, text embeddings are generated from the `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
| not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
| ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
| [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| guidance_rescale (`float`, *optional*, defaults to 0.0): | |
| Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are | |
| Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when | |
| using zero terminal SNR. | |
| clip_skip (`int`, *optional*): | |
| Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
| the output of the pre-final layer will be used for computing the prompt embeddings. | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
| otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
| second element is a list of `bool`s indicating whether the corresponding generated image contains | |
| "not-safe-for-work" (nsfw) content. | |
| """ | |
| callback = kwargs.pop("callback", None) | |
| callback_steps = kwargs.pop("callback_steps", None) | |
| if callback is not None: | |
| deprecate( | |
| "callback", | |
| "1.0.0", | |
| "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
| ) | |
| if callback_steps is not None: | |
| deprecate( | |
| "callback_steps", | |
| "1.0.0", | |
| "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
| ) | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| # to deal with lora scaling and other possible forward hooks | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| height, | |
| width, | |
| callback_steps, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| callback_on_step_end_tensor_inputs, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._guidance_rescale = guidance_rescale | |
| self._clip_skip = clip_skip | |
| self._cross_attention_kwargs = cross_attention_kwargs | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # 3. Encode input prompt | |
| lora_scale = ( | |
| self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | |
| ) | |
| prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| self.do_classifier_free_guidance, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| lora_scale=lora_scale, | |
| clip_skip=self.clip_skip, | |
| ) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| if self.do_classifier_free_guidance: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| tmp_embeds = negative_prompt_embeds.clone() | |
| tmp_embeds[:,0:1,:] = prompt_embeds | |
| prompt_embeds = tmp_embeds | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| # TODO | |
| if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
| image_embeds = self.prepare_ip_adapter_image_embeds( | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| self.do_classifier_free_guidance, | |
| ) | |
| # if ip_adapter_image is not None: | |
| # if self.unet.multi_frames_condition: | |
| # output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, VideoProjModel) else True | |
| # else: | |
| # output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True | |
| # # NOTE: ip_adapter_image shold be list with len() == 50 | |
| # image_embeds, negative_image_embeds = self.encode_image( | |
| # ip_adapter_image, device, num_images_per_prompt, output_hidden_state | |
| # ) | |
| # # import ipdb; ipdb.set_trace() | |
| # image_embeds = image_embeds.unsqueeze(0) | |
| # negative_image_embeds = negative_image_embeds.unsqueeze(0) | |
| # if not self.unet.multi_frames_condition: | |
| # image_embeds = torch.mean(image_embeds, dim=1, keepdim=False) | |
| # negative_image_embeds = negative_image_embeds[:,0, ...] | |
| # if self.do_classifier_free_guidance: | |
| # image_embeds = torch.cat([negative_image_embeds, image_embeds]) | |
| # 4. Prepare timesteps | |
| timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 6.1 Add image embeds for IP-Adapter | |
| added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None | |
| # 6.2 Optionally get Guidance Scale Embedding | |
| timestep_cond = None | |
| if self.unet.config.time_cond_proj_dim is not None: | |
| guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) | |
| timestep_cond = self.get_guidance_scale_embedding( | |
| guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
| ).to(device=device, dtype=latents.dtype) | |
| # 7. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| self._num_timesteps = len(timesteps) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| timestep_cond=timestep_cond, | |
| cross_attention_kwargs=self.cross_attention_kwargs, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: | |
| # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
| noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| if not output_type == "latent": | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ | |
| 0 | |
| ] | |
| image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
| else: | |
| image = latents | |
| has_nsfw_concept = None | |
| if has_nsfw_concept is None: | |
| do_denormalize = [True] * image.shape[0] | |
| else: | |
| do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
| image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image, has_nsfw_concept) | |
| return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |