Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from PIL import Image | |
import numpy as np | |
import gradio as gr | |
class DCGAN_Generator(nn.Module): | |
def __init__(self): | |
super(DCGAN_Generator, self).__init__() | |
self.conv1 = nn.ConvTranspose2d(100, 256, 5) | |
self.bn1 = nn.BatchNorm2d(256) | |
self.relu1 = nn.LeakyReLU(negative_slope=0.2) | |
self.conv2 = nn.ConvTranspose2d(256, 256, 5) | |
self.bn2 = nn.BatchNorm2d(256) | |
self.relu2 = nn.LeakyReLU(negative_slope=0.2) | |
self.conv3 = nn.ConvTranspose2d(256, 128, 4) | |
self.bn3 = nn.BatchNorm2d(128) | |
self.relu3 = nn.LeakyReLU(negative_slope=0.2) | |
self.conv4 = nn.ConvTranspose2d(128, 64, 2, 2) | |
self.bn4 = nn.BatchNorm2d(64) | |
self.relu4 = nn.LeakyReLU(negative_slope=0.2) | |
self.conv5 = nn.ConvTranspose2d(64, 32, 3) | |
self.bn5 = nn.BatchNorm2d(32) | |
self.relu5 = nn.LeakyReLU(negative_slope=0.2) | |
self.conv6 = nn.ConvTranspose2d(32, 1, 3) | |
self.tanh1 = nn.Tanh() | |
def forward(self, x): | |
x = self.relu1(self.bn1(self.conv1(x))) | |
x = self.relu2(self.bn2(self.conv2(x))) | |
x = self.relu3(self.bn3(self.conv3(x))) | |
x = self.relu4(self.bn4(self.conv4(x))) | |
x = self.relu5(self.bn5(self.conv5(x))) | |
return self.tanh1(self.conv6(x)) | |
MODEL_PATH = './gan_mnist_generator_20.pt' | |
model = DCGAN_Generator() | |
model.load_state_dict( | |
torch.load( | |
MODEL_PATH, | |
map_location=torch.device('cpu') | |
) | |
) | |
def run_generative_model(use_seed="False", seed=42): | |
if use_seed == "True": | |
torch.random.manual_seed(seed) | |
# Run generator model | |
noise = torch.randn(1, 100, 1, 1) | |
with torch.no_grad(): | |
im = model(noise).detach().cpu() | |
# Process image | |
im = torch.squeeze(im) # reduce dimension to get single image | |
im = im * 128 + 128 # linear scaler from [-1, 1] to [0, 255] | |
im = np.uint8(im) | |
return Image.fromarray(im) | |
demo = gr.Interface( | |
fn=run_generative_model, | |
inputs=[ | |
gr.Radio(["True", "False"], value="False"), | |
gr.Slider(0, 100, value=42), | |
], | |
outputs="image", | |
) | |
demo.launch() |