Spaces:
Runtime error
Runtime error
Create new file
Browse files
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
|
4 |
+
from src.models import Wav2Vec2ForSpeechClassification #imported from https://github.com/m3hrdadfi/soxan
|
5 |
+
import gradio as gr
|
6 |
+
import librosa
|
7 |
+
|
8 |
+
device = torch.device("cpu")
|
9 |
+
model_name_or_path = "harshit345/xlsr-wav2vec-speech-emotion-recognition"
|
10 |
+
config = AutoConfig.from_pretrained(model_name_or_path)
|
11 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
|
12 |
+
sampling_rate = feature_extractor.sampling_rate
|
13 |
+
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path)
|
14 |
+
|
15 |
+
#load input file and resample to 16kHz
|
16 |
+
def load_data(path):
|
17 |
+
speech, sampling_rate = librosa.load(path)
|
18 |
+
if len(speech.shape) > 1:
|
19 |
+
speech = speech[:,0] + speech[:,1]
|
20 |
+
if sampling_rate != 16000:
|
21 |
+
speech = librosa.resample(speech, sampling_rate,16000)
|
22 |
+
return speech
|
23 |
+
|
24 |
+
#modified version of predict function from https://github.com/m3hrdadfi/soxan
|
25 |
+
def inference(path):
|
26 |
+
speech = load_data(path)
|
27 |
+
inputs = feature_extractor(speech, return_tensors="pt").input_values
|
28 |
+
with torch.no_grad():
|
29 |
+
logits = model(inputs).logits
|
30 |
+
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
|
31 |
+
outputs = {config.id2label[i]: float(round(score,2)) for i, score in enumerate(scores)}
|
32 |
+
return outputs
|
33 |
+
|
34 |
+
inputs = gr.inputs.Audio(label="Input Audio", type="filepath", source="microphone")
|
35 |
+
outputs = gr.outputs.Label(type="confidences", label = "Output Scores")
|
36 |
+
title = "Wav2Vec2 Speech Emotion Recognition"
|
37 |
+
description = "This is a demo of the Wav2Vec2 Speech Emotion Recognition model. Record an audio file and the top emotions inferred will be displayed."
|
38 |
+
examples = ['data/heart.wav', 'data/happy26.wav', 'data/jm24.wav', 'data/newton.wav', 'data/speeding.wav']
|
39 |
+
article = "<a href = 'https://github.com/m3hrdadfi/soxan'> Wav2Vec2 Speech Classification Github Repository"
|
40 |
+
|
41 |
+
|
42 |
+
iface = gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, theme="peach", examples=examples)
|
43 |
+
iface.launch(debug=True)
|