sdas1020 commited on
Commit
0d6ad62
·
1 Parent(s): 61783d4

Create new file

Browse files
Files changed (1) hide show
  1. app.py +43 -0
app.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ from transformers import AutoConfig, Wav2Vec2FeatureExtractor
4
+ from src.models import Wav2Vec2ForSpeechClassification #imported from https://github.com/m3hrdadfi/soxan
5
+ import gradio as gr
6
+ import librosa
7
+
8
+ device = torch.device("cpu")
9
+ model_name_or_path = "harshit345/xlsr-wav2vec-speech-emotion-recognition"
10
+ config = AutoConfig.from_pretrained(model_name_or_path)
11
+ feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
12
+ sampling_rate = feature_extractor.sampling_rate
13
+ model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path)
14
+
15
+ #load input file and resample to 16kHz
16
+ def load_data(path):
17
+ speech, sampling_rate = librosa.load(path)
18
+ if len(speech.shape) > 1:
19
+ speech = speech[:,0] + speech[:,1]
20
+ if sampling_rate != 16000:
21
+ speech = librosa.resample(speech, sampling_rate,16000)
22
+ return speech
23
+
24
+ #modified version of predict function from https://github.com/m3hrdadfi/soxan
25
+ def inference(path):
26
+ speech = load_data(path)
27
+ inputs = feature_extractor(speech, return_tensors="pt").input_values
28
+ with torch.no_grad():
29
+ logits = model(inputs).logits
30
+ scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
31
+ outputs = {config.id2label[i]: float(round(score,2)) for i, score in enumerate(scores)}
32
+ return outputs
33
+
34
+ inputs = gr.inputs.Audio(label="Input Audio", type="filepath", source="microphone")
35
+ outputs = gr.outputs.Label(type="confidences", label = "Output Scores")
36
+ title = "Wav2Vec2 Speech Emotion Recognition"
37
+ description = "This is a demo of the Wav2Vec2 Speech Emotion Recognition model. Record an audio file and the top emotions inferred will be displayed."
38
+ examples = ['data/heart.wav', 'data/happy26.wav', 'data/jm24.wav', 'data/newton.wav', 'data/speeding.wav']
39
+ article = "<a href = 'https://github.com/m3hrdadfi/soxan'> Wav2Vec2 Speech Classification Github Repository"
40
+
41
+
42
+ iface = gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, theme="peach", examples=examples)
43
+ iface.launch(debug=True)