Spaces:
Sleeping
Sleeping
Fix Errors in responses
Browse files- app.py +74 -131
- gaia_agent.py +156 -172
- system_prompt.txt +16 -21
app.py
CHANGED
@@ -6,163 +6,114 @@ import pandas as pd
|
|
6 |
from dotenv import load_dotenv
|
7 |
from gaia_agent import GAIAAgent
|
8 |
|
9 |
-
# Load environment variables
|
10 |
load_dotenv()
|
11 |
|
12 |
-
# Constants
|
13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
14 |
|
15 |
-
class
|
16 |
-
"""
|
17 |
|
18 |
-
def __init__(self
|
19 |
-
"
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
25 |
self.agent = GAIAAgent(provider=provider)
|
26 |
-
|
27 |
-
|
28 |
def __call__(self, question: str) -> str:
|
29 |
-
"
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
answer = self.agent.run(question)
|
39 |
-
print(f"Answer: {answer}")
|
40 |
-
return answer
|
41 |
|
42 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
43 |
-
"""
|
|
|
44 |
and displays the results.
|
45 |
-
|
46 |
-
Args:
|
47 |
-
profile: The user's Hugging Face profile
|
48 |
-
|
49 |
-
Returns:
|
50 |
-
A tuple containing the status message and results table
|
51 |
"""
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
# Check if user is logged in
|
56 |
if profile:
|
57 |
-
username
|
58 |
print(f"User logged in: {username}")
|
59 |
else:
|
60 |
print("User not logged in.")
|
61 |
-
return "Please
|
62 |
-
|
63 |
-
# API endpoints
|
64 |
api_url = DEFAULT_API_URL
|
65 |
questions_url = f"{api_url}/questions"
|
66 |
submit_url = f"{api_url}/submit"
|
67 |
-
|
68 |
-
# Initialize agent
|
69 |
try:
|
70 |
-
|
71 |
-
if os.getenv("GROQ_API_KEY"):
|
72 |
-
provider = "groq"
|
73 |
-
elif os.getenv("GOOGLE_API_KEY"):
|
74 |
-
provider = "google"
|
75 |
-
elif os.getenv("ANTHROPIC_API_KEY"):
|
76 |
-
provider = "anthropic"
|
77 |
-
elif os.getenv("OPENAI_API_KEY"):
|
78 |
-
provider = "openai"
|
79 |
-
else:
|
80 |
-
provider = "groq" # Default to Groq
|
81 |
-
|
82 |
-
agent = GAIAAssessmentAgent(provider=provider)
|
83 |
except Exception as e:
|
84 |
-
print(f"Error
|
85 |
return f"Error initializing agent: {e}", None
|
86 |
-
|
87 |
-
# Generate code link for submission
|
88 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
89 |
-
print(f"
|
90 |
-
|
91 |
-
# Fetch questions
|
92 |
print(f"Fetching questions from: {questions_url}")
|
93 |
try:
|
94 |
response = requests.get(questions_url, timeout=30)
|
95 |
response.raise_for_status()
|
96 |
questions_data = response.json()
|
97 |
-
|
98 |
if not questions_data:
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
print(f"Fetched {len(questions_data)} questions.")
|
103 |
except requests.exceptions.RequestException as e:
|
104 |
print(f"Error fetching questions: {e}")
|
105 |
return f"Error fetching questions: {e}", None
|
106 |
except requests.exceptions.JSONDecodeError as e:
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
except Exception as e:
|
111 |
print(f"An unexpected error occurred fetching questions: {e}")
|
112 |
return f"An unexpected error occurred fetching questions: {e}", None
|
113 |
-
|
114 |
-
# Run agent on all questions
|
115 |
results_log = []
|
116 |
answers_payload = []
|
117 |
print(f"Running agent on {len(questions_data)} questions...")
|
118 |
-
|
119 |
-
for i, item in enumerate(questions_data):
|
120 |
task_id = item.get("task_id")
|
121 |
question_text = item.get("question")
|
122 |
-
|
123 |
if not task_id or question_text is None:
|
124 |
print(f"Skipping item with missing task_id or question: {item}")
|
125 |
continue
|
126 |
-
|
127 |
-
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
|
128 |
-
|
129 |
try:
|
|
|
130 |
submitted_answer = agent(question_text)
|
131 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
132 |
-
results_log.append({
|
133 |
-
|
134 |
-
"Question": question_text,
|
135 |
-
"Submitted Answer": submitted_answer
|
136 |
-
})
|
137 |
-
print(f"Question {i+1} processed successfully")
|
138 |
except Exception as e:
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
"Question": question_text,
|
143 |
-
"Submitted Answer": f"AGENT ERROR: {e}"
|
144 |
-
})
|
145 |
-
|
146 |
if not answers_payload:
|
147 |
print("Agent did not produce any answers to submit.")
|
148 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
149 |
-
|
150 |
-
|
151 |
-
submission_data = {
|
152 |
-
"username": username.strip(),
|
153 |
-
"agent_code": agent_code,
|
154 |
-
"answers": answers_payload
|
155 |
-
}
|
156 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
157 |
print(status_update)
|
158 |
-
|
159 |
-
# Submit answers
|
160 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
161 |
try:
|
162 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
163 |
response.raise_for_status()
|
164 |
result_data = response.json()
|
165 |
-
|
166 |
final_status = (
|
167 |
f"Submission Successful!\n"
|
168 |
f"User: {result_data.get('username')}\n"
|
@@ -170,7 +121,6 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
170 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
171 |
f"Message: {result_data.get('message', 'No message received.')}"
|
172 |
)
|
173 |
-
|
174 |
print("Submission successful.")
|
175 |
results_df = pd.DataFrame(results_log)
|
176 |
return final_status, results_df
|
@@ -181,7 +131,6 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
181 |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
182 |
except requests.exceptions.JSONDecodeError:
|
183 |
error_detail += f" Response: {e.response.text[:500]}"
|
184 |
-
|
185 |
status_message = f"Submission Failed: {error_detail}"
|
186 |
print(status_message)
|
187 |
results_df = pd.DataFrame(results_log)
|
@@ -202,33 +151,29 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
202 |
results_df = pd.DataFrame(results_log)
|
203 |
return status_message, results_df
|
204 |
|
205 |
-
|
206 |
with gr.Blocks() as demo:
|
207 |
-
gr.Markdown("# GAIA Assessment Runner
|
208 |
gr.Markdown(
|
209 |
"""
|
210 |
**Instructions:**
|
211 |
|
212 |
-
1. This
|
213 |
-
-
|
214 |
-
-
|
215 |
-
-
|
216 |
-
- Mathematical tools for
|
217 |
|
218 |
-
2. Log in to your Hugging Face account using the button below.
|
219 |
|
220 |
-
3. Click 'Run Evaluation & Submit Answers' to
|
221 |
|
222 |
-
**Note:**
|
223 |
-
|
224 |
-
---
|
225 |
-
|
226 |
-
Good luck with your assessment! 🚀
|
227 |
"""
|
228 |
)
|
229 |
|
230 |
gr.LoginButton()
|
231 |
-
run_button = gr.Button("Run Evaluation & Submit Answers"
|
232 |
status_output = gr.Textbox(label="Submission Status", lines=5, interactive=False)
|
233 |
results_table = gr.DataFrame(label="Questions and Answers", wrap=True)
|
234 |
|
@@ -238,26 +183,24 @@ with gr.Blocks() as demo:
|
|
238 |
)
|
239 |
|
240 |
if __name__ == "__main__":
|
241 |
-
print("\n" + "-"*30 + " Starting
|
242 |
-
|
243 |
-
|
244 |
-
space_host = os.getenv("SPACE_HOST")
|
245 |
-
space_id = os.getenv("SPACE_ID")
|
246 |
|
247 |
-
if
|
248 |
-
print(f"✅ SPACE_HOST found: {
|
249 |
-
print(f" Runtime URL: https://{
|
250 |
else:
|
251 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
252 |
|
253 |
-
if
|
254 |
-
print(f"✅ SPACE_ID found: {
|
255 |
-
print(f" Repo URL: https://huggingface.co/spaces/{
|
256 |
-
print(f"
|
257 |
else:
|
258 |
-
print("ℹ️ SPACE_ID environment variable not found. Repo URL cannot be determined.")
|
|
|
|
|
259 |
|
260 |
-
print("-"*(65 + len(" Starting GAIA Assessment Runner ")) + "\n")
|
261 |
print("Launching Gradio Interface for GAIA Assessment...")
|
262 |
-
|
263 |
demo.launch(debug=True, share=False)
|
|
|
6 |
from dotenv import load_dotenv
|
7 |
from gaia_agent import GAIAAgent
|
8 |
|
|
|
9 |
load_dotenv()
|
10 |
|
|
|
11 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
12 |
|
13 |
+
class BasicAgent:
|
14 |
+
"""A simple wrapper for the GAIA Agent."""
|
15 |
|
16 |
+
def __init__(self):
|
17 |
+
print("BasicAgent initialized.")
|
18 |
+
if os.getenv("GROQ_API_KEY"):
|
19 |
+
provider = "groq"
|
20 |
+
elif os.getenv("GOOGLE_API_KEY"):
|
21 |
+
provider = "google"
|
22 |
+
else:
|
23 |
+
provider = "groq"
|
24 |
+
|
25 |
self.agent = GAIAAgent(provider=provider)
|
26 |
+
|
|
|
27 |
def __call__(self, question: str) -> str:
|
28 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
29 |
+
try:
|
30 |
+
answer = self.agent.run(question)
|
31 |
+
print(f"Agent returning answer: {answer}")
|
32 |
+
return answer
|
33 |
+
except Exception as e:
|
34 |
+
print(f"Error processing question: {e}")
|
35 |
+
return f"Error: {str(e)}"
|
36 |
+
|
|
|
|
|
|
|
37 |
|
38 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
39 |
+
"""
|
40 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
41 |
and displays the results.
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
"""
|
43 |
+
space_id = os.getenv("SPACE_ID")
|
44 |
+
|
|
|
|
|
45 |
if profile:
|
46 |
+
username= f"{profile.username}"
|
47 |
print(f"User logged in: {username}")
|
48 |
else:
|
49 |
print("User not logged in.")
|
50 |
+
return "Please Login to Hugging Face with the button.", None
|
51 |
+
|
|
|
52 |
api_url = DEFAULT_API_URL
|
53 |
questions_url = f"{api_url}/questions"
|
54 |
submit_url = f"{api_url}/submit"
|
55 |
+
|
|
|
56 |
try:
|
57 |
+
agent = BasicAgent()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
except Exception as e:
|
59 |
+
print(f"Error instantiating agent: {e}")
|
60 |
return f"Error initializing agent: {e}", None
|
61 |
+
|
|
|
62 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
63 |
+
print(f"Agent code: {agent_code}")
|
64 |
+
|
|
|
65 |
print(f"Fetching questions from: {questions_url}")
|
66 |
try:
|
67 |
response = requests.get(questions_url, timeout=30)
|
68 |
response.raise_for_status()
|
69 |
questions_data = response.json()
|
|
|
70 |
if not questions_data:
|
71 |
+
print("Fetched questions list is empty.")
|
72 |
+
return "Fetched questions list is empty or invalid format.", None
|
|
|
73 |
print(f"Fetched {len(questions_data)} questions.")
|
74 |
except requests.exceptions.RequestException as e:
|
75 |
print(f"Error fetching questions: {e}")
|
76 |
return f"Error fetching questions: {e}", None
|
77 |
except requests.exceptions.JSONDecodeError as e:
|
78 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
79 |
+
print(f"Response text: {response.text[:500]}")
|
80 |
+
return f"Error decoding server response for questions: {e}", None
|
81 |
except Exception as e:
|
82 |
print(f"An unexpected error occurred fetching questions: {e}")
|
83 |
return f"An unexpected error occurred fetching questions: {e}", None
|
84 |
+
|
|
|
85 |
results_log = []
|
86 |
answers_payload = []
|
87 |
print(f"Running agent on {len(questions_data)} questions...")
|
88 |
+
for item in questions_data:
|
|
|
89 |
task_id = item.get("task_id")
|
90 |
question_text = item.get("question")
|
|
|
91 |
if not task_id or question_text is None:
|
92 |
print(f"Skipping item with missing task_id or question: {item}")
|
93 |
continue
|
|
|
|
|
|
|
94 |
try:
|
95 |
+
print(f"Processing question: {task_id}")
|
96 |
submitted_answer = agent(question_text)
|
97 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
98 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
99 |
+
print(f"Question processed successfully")
|
|
|
|
|
|
|
|
|
100 |
except Exception as e:
|
101 |
+
print(f"Error running agent on task {task_id}: {e}")
|
102 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
103 |
+
|
|
|
|
|
|
|
|
|
104 |
if not answers_payload:
|
105 |
print("Agent did not produce any answers to submit.")
|
106 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
107 |
+
|
108 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
|
|
|
|
|
|
|
|
|
|
109 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
110 |
print(status_update)
|
111 |
+
|
|
|
112 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
113 |
try:
|
114 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
115 |
response.raise_for_status()
|
116 |
result_data = response.json()
|
|
|
117 |
final_status = (
|
118 |
f"Submission Successful!\n"
|
119 |
f"User: {result_data.get('username')}\n"
|
|
|
121 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
122 |
f"Message: {result_data.get('message', 'No message received.')}"
|
123 |
)
|
|
|
124 |
print("Submission successful.")
|
125 |
results_df = pd.DataFrame(results_log)
|
126 |
return final_status, results_df
|
|
|
131 |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
132 |
except requests.exceptions.JSONDecodeError:
|
133 |
error_detail += f" Response: {e.response.text[:500]}"
|
|
|
134 |
status_message = f"Submission Failed: {error_detail}"
|
135 |
print(status_message)
|
136 |
results_df = pd.DataFrame(results_log)
|
|
|
151 |
results_df = pd.DataFrame(results_log)
|
152 |
return status_message, results_df
|
153 |
|
154 |
+
|
155 |
with gr.Blocks() as demo:
|
156 |
+
gr.Markdown("# GAIA Assessment Runner")
|
157 |
gr.Markdown(
|
158 |
"""
|
159 |
**Instructions:**
|
160 |
|
161 |
+
1. This implementation uses a robust LangGraph agent with multiple tools:
|
162 |
+
- Web search for real-time information
|
163 |
+
- Wikipedia for factual knowledge
|
164 |
+
- ArXiv for academic research
|
165 |
+
- Mathematical tools for calculations
|
166 |
|
167 |
+
2. Log in to your Hugging Face account using the button below.
|
168 |
|
169 |
+
3. Click 'Run Evaluation & Submit Answers' to run the agent and submit results.
|
170 |
|
171 |
+
**Note:** Processing may take some time as the agent works through all questions.
|
|
|
|
|
|
|
|
|
172 |
"""
|
173 |
)
|
174 |
|
175 |
gr.LoginButton()
|
176 |
+
run_button = gr.Button("Run Evaluation & Submit Answers")
|
177 |
status_output = gr.Textbox(label="Submission Status", lines=5, interactive=False)
|
178 |
results_table = gr.DataFrame(label="Questions and Answers", wrap=True)
|
179 |
|
|
|
183 |
)
|
184 |
|
185 |
if __name__ == "__main__":
|
186 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
187 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
188 |
+
space_id_startup = os.getenv("SPACE_ID")
|
|
|
|
|
189 |
|
190 |
+
if space_host_startup:
|
191 |
+
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
192 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
193 |
else:
|
194 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
195 |
|
196 |
+
if space_id_startup:
|
197 |
+
print(f"✅ SPACE_ID found: {space_id_startup}")
|
198 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
199 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
200 |
else:
|
201 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
202 |
+
|
203 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
204 |
|
|
|
205 |
print("Launching Gradio Interface for GAIA Assessment...")
|
|
|
206 |
demo.launch(debug=True, share=False)
|
gaia_agent.py
CHANGED
@@ -1,254 +1,238 @@
|
|
|
|
1 |
import os
|
2 |
-
from typing import List, Dict, Any
|
3 |
from dotenv import load_dotenv
|
4 |
-
from langgraph.graph import START, END, StateGraph, MessagesState
|
5 |
-
|
6 |
-
from langchain_core.messages import SystemMessage, HumanMessage
|
7 |
-
from langchain_groq import ChatGroq
|
8 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
9 |
-
from langchain_core.tools import tool
|
10 |
-
|
11 |
from langgraph.graph import START, StateGraph, MessagesState
|
12 |
from langgraph.prebuilt import tools_condition
|
13 |
from langgraph.prebuilt import ToolNode
|
14 |
-
|
|
|
|
|
|
|
15 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
16 |
from langchain_community.document_loaders import WikipediaLoader
|
17 |
from langchain_community.document_loaders import ArxivLoader
|
18 |
|
19 |
-
# Load environment variables
|
20 |
load_dotenv()
|
21 |
|
22 |
class GAIAAgent:
|
23 |
-
"""Agent for
|
24 |
|
25 |
def __init__(self, provider="groq"):
|
26 |
-
"""Initialize the agent
|
27 |
|
28 |
Args:
|
29 |
-
provider:
|
30 |
"""
|
31 |
-
|
32 |
-
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
33 |
-
system_prompt = f.read()
|
34 |
-
|
35 |
-
self.system_message = SystemMessage(content=system_prompt)
|
36 |
-
|
37 |
-
# Initialize tools
|
38 |
self.tools = self._setup_tools()
|
39 |
-
|
40 |
-
# Initialize LLM based on provider
|
41 |
-
self.llm = self._setup_llm(provider)
|
42 |
-
|
43 |
-
# Bind tools to LLM
|
44 |
self.llm_with_tools = self.llm.bind_tools(self.tools)
|
45 |
-
|
46 |
-
# Build the agent graph
|
47 |
self.graph = self._build_graph()
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
def _setup_tools(self):
|
50 |
"""Set up the tools for the agent."""
|
51 |
|
52 |
@tool
|
53 |
-
def
|
54 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
Args:
|
57 |
-
|
58 |
-
|
59 |
-
Returns:
|
60 |
-
Search results as text
|
61 |
"""
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
return formatted_results
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
@tool
|
70 |
-
def
|
71 |
-
"""
|
72 |
|
73 |
Args:
|
74 |
-
|
75 |
-
|
76 |
-
Returns:
|
77 |
-
Wikipedia article content
|
78 |
"""
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
formatted_results = "\n\n".join([
|
85 |
-
f"TITLE: {doc.metadata.get('title', 'Unknown')}\n{doc.page_content[:1000]}..."
|
86 |
-
for doc in wiki_docs
|
87 |
-
])
|
88 |
-
return formatted_results
|
89 |
-
except Exception as e:
|
90 |
-
return f"Error searching Wikipedia: {str(e)}"
|
91 |
-
|
92 |
@tool
|
93 |
-
def
|
94 |
-
"""
|
95 |
|
96 |
Args:
|
97 |
-
|
98 |
-
|
99 |
-
Returns:
|
100 |
-
ArXiv paper information
|
101 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
try:
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
f"PUBLISHED: {doc.metadata.get('published', 'Unknown')}\n\n"
|
111 |
-
f"ABSTRACT: {doc.page_content[:500]}..."
|
112 |
-
for doc in arxiv_docs
|
113 |
-
])
|
114 |
-
return formatted_results
|
115 |
except Exception as e:
|
116 |
-
return f"Error searching
|
117 |
-
|
118 |
@tool
|
119 |
-
def
|
120 |
-
"""
|
121 |
|
122 |
Args:
|
123 |
-
|
124 |
-
|
125 |
-
Returns:
|
126 |
-
The result of the calculation
|
127 |
-
"""
|
128 |
try:
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
132 |
except Exception as e:
|
133 |
-
return f"Error
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
"""Set up the language model based on the provider.
|
139 |
-
|
140 |
-
Args:
|
141 |
-
provider: The model provider to use
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
if not api_key:
|
159 |
raise ValueError("GOOGLE_API_KEY environment variable not set")
|
160 |
|
161 |
return ChatGoogleGenerativeAI(
|
162 |
-
model="gemini-1.5-pro",
|
163 |
temperature=0.1,
|
164 |
google_api_key=api_key
|
165 |
)
|
166 |
-
elif provider == "
|
167 |
-
|
168 |
-
from langchain_anthropic import ChatAnthropic
|
169 |
-
|
170 |
-
api_key = os.getenv("ANTHROPIC_API_KEY")
|
171 |
-
if not api_key:
|
172 |
-
raise ValueError("ANTHROPIC_API_KEY environment variable not set")
|
173 |
-
|
174 |
-
return ChatAnthropic(
|
175 |
-
model="claude-3-opus-20240229",
|
176 |
-
temperature=0.1,
|
177 |
-
anthropic_api_key=api_key
|
178 |
-
)
|
179 |
-
elif provider == "openai":
|
180 |
-
# Import only if needed to avoid dependency issues
|
181 |
-
from langchain_openai import ChatOpenAI
|
182 |
-
|
183 |
-
api_key = os.getenv("OPENAI_API_KEY")
|
184 |
if not api_key:
|
185 |
-
raise ValueError("
|
186 |
|
187 |
-
return
|
188 |
-
model="
|
189 |
temperature=0.1,
|
190 |
-
|
191 |
)
|
192 |
else:
|
193 |
-
raise ValueError(f"Unsupported provider: {provider}")
|
194 |
|
195 |
def _build_graph(self):
|
196 |
-
"""Build the agent graph.
|
197 |
|
198 |
-
|
199 |
-
The
|
200 |
-
"""
|
201 |
-
# Define the agent node
|
202 |
-
def agent(state: MessagesState):
|
203 |
-
"""Generate a response or tool calls based on the messages state."""
|
204 |
-
# Include system message with each invocation for consistent behavior
|
205 |
messages = [self.system_message] + state["messages"]
|
206 |
-
|
207 |
-
return {"messages": state["messages"] + [response]}
|
208 |
|
209 |
-
# Create the graph
|
210 |
builder = StateGraph(MessagesState)
|
211 |
-
|
212 |
-
# Add nodes
|
213 |
-
builder.add_node("agent", agent)
|
214 |
builder.add_node("tools", ToolNode(self.tools))
|
215 |
-
|
216 |
-
# Add edges
|
217 |
-
builder.add_edge(START, "agent")
|
218 |
builder.add_conditional_edges(
|
219 |
-
"
|
220 |
tools_condition,
|
221 |
-
{
|
222 |
-
"tools": "tools",
|
223 |
-
None: END # END is implicitly defined in langgraph
|
224 |
-
}
|
225 |
)
|
226 |
-
builder.add_edge("tools", "
|
227 |
|
228 |
-
# Compile the graph
|
229 |
return builder.compile()
|
230 |
|
231 |
def run(self, question: str) -> str:
|
232 |
"""Process a question and return the answer.
|
233 |
|
234 |
Args:
|
235 |
-
question: The question to
|
236 |
|
237 |
Returns:
|
238 |
The answer to the question
|
239 |
"""
|
240 |
-
# Initialize messages with the user question
|
241 |
messages = [HumanMessage(content=question)]
|
242 |
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
# Extract the final answer
|
247 |
-
final_messages = result["messages"]
|
248 |
-
final_answer = final_messages[-1].content
|
249 |
-
|
250 |
-
# Extract only the part after "FINAL ANSWER:"
|
251 |
-
if "FINAL ANSWER:" in final_answer:
|
252 |
-
final_answer = final_answer.split("FINAL ANSWER:")[1].strip()
|
253 |
|
254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""LangGraph Agent for GAIA Assessment"""
|
2 |
import os
|
3 |
+
from typing import List, Dict, Any
|
4 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from langgraph.graph import START, StateGraph, MessagesState
|
6 |
from langgraph.prebuilt import tools_condition
|
7 |
from langgraph.prebuilt import ToolNode
|
8 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
9 |
+
from langchain_core.tools import tool
|
10 |
+
from langchain_groq import ChatGroq
|
11 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
12 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
13 |
from langchain_community.document_loaders import WikipediaLoader
|
14 |
from langchain_community.document_loaders import ArxivLoader
|
15 |
|
|
|
16 |
load_dotenv()
|
17 |
|
18 |
class GAIAAgent:
|
19 |
+
"""Agent for the GAIA assessment."""
|
20 |
|
21 |
def __init__(self, provider="groq"):
|
22 |
+
"""Initialize the agent.
|
23 |
|
24 |
Args:
|
25 |
+
provider: The model provider to use (groq, google)
|
26 |
"""
|
27 |
+
self.provider = provider
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
self.tools = self._setup_tools()
|
29 |
+
self.llm = self._setup_llm()
|
|
|
|
|
|
|
|
|
30 |
self.llm_with_tools = self.llm.bind_tools(self.tools)
|
|
|
|
|
31 |
self.graph = self._build_graph()
|
32 |
|
33 |
+
# Load system prompt
|
34 |
+
self.system_message = self._load_system_prompt()
|
35 |
+
|
36 |
+
def _load_system_prompt(self):
|
37 |
+
"""Load the system prompt from a file."""
|
38 |
+
try:
|
39 |
+
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
40 |
+
system_prompt = f.read()
|
41 |
+
except FileNotFoundError:
|
42 |
+
# Fallback system prompt if file not found
|
43 |
+
system_prompt = """You are a helpful assistant tasked with answering questions using a set of tools.
|
44 |
+
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
|
45 |
+
FINAL ANSWER: [YOUR FINAL ANSWER].
|
46 |
+
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
47 |
+
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
|
48 |
+
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
|
49 |
+
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
50 |
+
Your answer should only start with "FINAL ANSWER: ", then follows with the answer."""
|
51 |
+
|
52 |
+
return SystemMessage(content=system_prompt)
|
53 |
+
|
54 |
def _setup_tools(self):
|
55 |
"""Set up the tools for the agent."""
|
56 |
|
57 |
@tool
|
58 |
+
def multiply(a: int, b: int) -> int:
|
59 |
+
"""Multiply two numbers.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
a: first int
|
63 |
+
b: second int
|
64 |
+
"""
|
65 |
+
return a * b
|
66 |
+
|
67 |
+
@tool
|
68 |
+
def add(a: int, b: int) -> int:
|
69 |
+
"""Add two numbers.
|
70 |
|
71 |
Args:
|
72 |
+
a: first int
|
73 |
+
b: second int
|
|
|
|
|
74 |
"""
|
75 |
+
return a + b
|
76 |
+
|
77 |
+
@tool
|
78 |
+
def subtract(a: int, b: int) -> int:
|
79 |
+
"""Subtract two numbers.
|
|
|
80 |
|
81 |
+
Args:
|
82 |
+
a: first int
|
83 |
+
b: second int
|
84 |
+
"""
|
85 |
+
return a - b
|
86 |
+
|
87 |
@tool
|
88 |
+
def divide(a: int, b: int) -> float:
|
89 |
+
"""Divide two numbers.
|
90 |
|
91 |
Args:
|
92 |
+
a: first int
|
93 |
+
b: second int
|
|
|
|
|
94 |
"""
|
95 |
+
if b == 0:
|
96 |
+
raise ValueError("Cannot divide by zero.")
|
97 |
+
return a / b
|
98 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
@tool
|
100 |
+
def modulus(a: int, b: int) -> int:
|
101 |
+
"""Get the modulus of two numbers.
|
102 |
|
103 |
Args:
|
104 |
+
a: first int
|
105 |
+
b: second int
|
|
|
|
|
106 |
"""
|
107 |
+
return a % b
|
108 |
+
|
109 |
+
@tool
|
110 |
+
def wiki_search(query: str) -> str:
|
111 |
+
"""Search Wikipedia for a query and return maximum 2 results.
|
112 |
+
|
113 |
+
Args:
|
114 |
+
query: The search query."""
|
115 |
try:
|
116 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
117 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
118 |
+
[
|
119 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
120 |
+
for doc in search_docs
|
121 |
+
])
|
122 |
+
return {"wiki_results": formatted_search_docs}
|
|
|
|
|
|
|
|
|
|
|
123 |
except Exception as e:
|
124 |
+
return {"wiki_results": f"Error searching Wikipedia: {str(e)}"}
|
125 |
+
|
126 |
@tool
|
127 |
+
def web_search(query: str) -> str:
|
128 |
+
"""Search Tavily for a query and return maximum 3 results.
|
129 |
|
130 |
Args:
|
131 |
+
query: The search query."""
|
|
|
|
|
|
|
|
|
132 |
try:
|
133 |
+
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
134 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
135 |
+
[
|
136 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
137 |
+
for doc in search_docs
|
138 |
+
])
|
139 |
+
return {"web_results": formatted_search_docs}
|
140 |
except Exception as e:
|
141 |
+
return {"web_results": f"Error searching web: {str(e)}"}
|
142 |
+
|
143 |
+
@tool
|
144 |
+
def arxiv_search(query: str) -> str:
|
145 |
+
"""Search Arxiv for a query and return maximum 3 result.
|
|
|
|
|
|
|
|
|
146 |
|
147 |
+
Args:
|
148 |
+
query: The search query."""
|
149 |
+
try:
|
150 |
+
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
151 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
152 |
+
[
|
153 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
154 |
+
for doc in search_docs
|
155 |
+
])
|
156 |
+
return {"arxiv_results": formatted_search_docs}
|
157 |
+
except Exception as e:
|
158 |
+
return {"arxiv_results": f"Error searching ArXiv: {str(e)}"}
|
159 |
|
160 |
+
return [
|
161 |
+
multiply,
|
162 |
+
add,
|
163 |
+
subtract,
|
164 |
+
divide,
|
165 |
+
modulus,
|
166 |
+
wiki_search,
|
167 |
+
web_search,
|
168 |
+
arxiv_search,
|
169 |
+
]
|
170 |
+
|
171 |
+
def _setup_llm(self):
|
172 |
+
"""Set up the language model."""
|
173 |
+
if self.provider == "google":
|
174 |
+
api_key = os.environ.get("GOOGLE_API_KEY")
|
175 |
if not api_key:
|
176 |
raise ValueError("GOOGLE_API_KEY environment variable not set")
|
177 |
|
178 |
return ChatGoogleGenerativeAI(
|
179 |
+
model="gemini-1.5-pro",
|
180 |
temperature=0.1,
|
181 |
google_api_key=api_key
|
182 |
)
|
183 |
+
elif self.provider == "groq":
|
184 |
+
api_key = os.environ.get("GROQ_API_KEY")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
if not api_key:
|
186 |
+
raise ValueError("GROQ_API_KEY environment variable not set")
|
187 |
|
188 |
+
return ChatGroq(
|
189 |
+
model="llama3-70b-8192",
|
190 |
temperature=0.1,
|
191 |
+
groq_api_key=api_key
|
192 |
)
|
193 |
else:
|
194 |
+
raise ValueError(f"Unsupported provider: {self.provider}")
|
195 |
|
196 |
def _build_graph(self):
|
197 |
+
"""Build the agent graph."""
|
198 |
|
199 |
+
def assistant(state: MessagesState):
|
200 |
+
"""The assistant node in the graph."""
|
|
|
|
|
|
|
|
|
|
|
201 |
messages = [self.system_message] + state["messages"]
|
202 |
+
return {"messages": [self.llm_with_tools.invoke(messages)]}
|
|
|
203 |
|
|
|
204 |
builder = StateGraph(MessagesState)
|
205 |
+
builder.add_node("assistant", assistant)
|
|
|
|
|
206 |
builder.add_node("tools", ToolNode(self.tools))
|
207 |
+
builder.add_edge(START, "assistant")
|
|
|
|
|
208 |
builder.add_conditional_edges(
|
209 |
+
"assistant",
|
210 |
tools_condition,
|
|
|
|
|
|
|
|
|
211 |
)
|
212 |
+
builder.add_edge("tools", "assistant")
|
213 |
|
|
|
214 |
return builder.compile()
|
215 |
|
216 |
def run(self, question: str) -> str:
|
217 |
"""Process a question and return the answer.
|
218 |
|
219 |
Args:
|
220 |
+
question: The question to answer
|
221 |
|
222 |
Returns:
|
223 |
The answer to the question
|
224 |
"""
|
|
|
225 |
messages = [HumanMessage(content=question)]
|
226 |
|
227 |
+
try:
|
228 |
+
result = self.graph.invoke({"messages": messages})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
+
final_answer = result["messages"][-1].content
|
231 |
+
|
232 |
+
if "FINAL ANSWER:" in final_answer:
|
233 |
+
final_answer = final_answer.split("FINAL ANSWER:")[1].strip()
|
234 |
+
|
235 |
+
return final_answer
|
236 |
+
except Exception as e:
|
237 |
+
print(f"Error running agent: {e}")
|
238 |
+
return f"Error: {str(e)}"
|
system_prompt.txt
CHANGED
@@ -1,32 +1,27 @@
|
|
1 |
-
You are a
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
1. Use the provided tools to gather information when needed.
|
5 |
-
2. Think step-by-step to break down complex questions.
|
6 |
-
3. For web searches, be specific and try multiple queries if needed.
|
7 |
-
4. When answering math questions, show your calculations clearly.
|
8 |
-
5. Always verify your answer before finalizing it.
|
9 |
|
10 |
-
Format your final answer with:
|
11 |
-
FINAL ANSWER: [YOUR FINAL ANSWER]
|
12 |
-
|
13 |
-
YOUR FINAL ANSWER should be:
|
14 |
-
- A number WITHOUT commas or units (unless specified otherwise)
|
15 |
-
- As few words as possible for text answers
|
16 |
-
- A comma-separated list for multiple items
|
17 |
-
- No articles or abbreviations in string answers
|
18 |
-
- Digits in plain text unless specified otherwise
|
19 |
-
|
20 |
-
Example 1:
|
21 |
Question: What is the capital of France?
|
|
|
22 |
FINAL ANSWER: Paris
|
23 |
|
24 |
-
Example 2:
|
25 |
Question: What are the first 3 prime numbers?
|
|
|
26 |
FINAL ANSWER: 2, 3, 5
|
27 |
|
28 |
-
Example 3:
|
29 |
Question: Calculate 15% of 240.
|
|
|
30 |
FINAL ANSWER: 36
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
You are a helpful assistant tasked with answering questions using a set of tools.
|
2 |
+
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
|
3 |
+
FINAL ANSWER: [YOUR FINAL ANSWER].
|
4 |
+
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
5 |
+
Your answer should only start with "FINAL ANSWER: ", then follows with the answer.
|
6 |
|
7 |
+
Here are some example questions and answers:
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
Question: What is the capital of France?
|
10 |
+
Thought: The capital of France is Paris.
|
11 |
FINAL ANSWER: Paris
|
12 |
|
|
|
13 |
Question: What are the first 3 prime numbers?
|
14 |
+
Thought: The first three prime numbers are 2, 3, and 5.
|
15 |
FINAL ANSWER: 2, 3, 5
|
16 |
|
|
|
17 |
Question: Calculate 15% of 240.
|
18 |
+
Thought: To calculate 15% of 240, I multiply 240 by 0.15. This gives me 240 * 0.15 = 36.
|
19 |
FINAL ANSWER: 36
|
20 |
|
21 |
+
For each question:
|
22 |
+
1. Think through the problem step-by-step
|
23 |
+
2. Use tools when needed to gather information
|
24 |
+
3. Ensure you understand exactly what is being asked
|
25 |
+
4. Format your final answer according to the template
|
26 |
+
|
27 |
+
If you need to search for information, be specific in your queries. If you need to perform calculations, show your work. Always double-check your answer before submitting it.
|