Spaces:
Sleeping
Sleeping
Initial Commit
Browse files- app.py +144 -77
- gaia_agent.py +255 -0
- requirements.txt +19 -1
- system_prompt.txt +32 -0
app.py
CHANGED
@@ -1,107 +1,168 @@
|
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
-
|
|
|
|
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
def __init__(self):
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def __call__(self, question: str) -> str:
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
def run_and_submit_all(
|
23 |
-
"""
|
24 |
-
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
25 |
and displays the results.
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
"""
|
27 |
-
#
|
28 |
-
space_id = os.getenv("SPACE_ID")
|
29 |
-
|
|
|
30 |
if profile:
|
31 |
-
username= f"{profile.username}"
|
32 |
print(f"User logged in: {username}")
|
33 |
else:
|
34 |
print("User not logged in.")
|
35 |
-
return "Please
|
36 |
-
|
|
|
37 |
api_url = DEFAULT_API_URL
|
38 |
questions_url = f"{api_url}/questions"
|
39 |
submit_url = f"{api_url}/submit"
|
40 |
-
|
41 |
-
#
|
42 |
try:
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
except Exception as e:
|
45 |
-
print(f"Error
|
46 |
return f"Error initializing agent: {e}", None
|
47 |
-
|
|
|
48 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
49 |
-
print(agent_code)
|
50 |
-
|
51 |
-
#
|
52 |
print(f"Fetching questions from: {questions_url}")
|
53 |
try:
|
54 |
-
response = requests.get(questions_url, timeout=
|
55 |
response.raise_for_status()
|
56 |
questions_data = response.json()
|
|
|
57 |
if not questions_data:
|
58 |
-
|
59 |
-
|
|
|
60 |
print(f"Fetched {len(questions_data)} questions.")
|
61 |
except requests.exceptions.RequestException as e:
|
62 |
print(f"Error fetching questions: {e}")
|
63 |
return f"Error fetching questions: {e}", None
|
64 |
except requests.exceptions.JSONDecodeError as e:
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
except Exception as e:
|
69 |
print(f"An unexpected error occurred fetching questions: {e}")
|
70 |
return f"An unexpected error occurred fetching questions: {e}", None
|
71 |
-
|
72 |
-
#
|
73 |
results_log = []
|
74 |
answers_payload = []
|
75 |
print(f"Running agent on {len(questions_data)} questions...")
|
76 |
-
|
|
|
77 |
task_id = item.get("task_id")
|
78 |
question_text = item.get("question")
|
|
|
79 |
if not task_id or question_text is None:
|
80 |
print(f"Skipping item with missing task_id or question: {item}")
|
81 |
continue
|
|
|
|
|
|
|
82 |
try:
|
83 |
submitted_answer = agent(question_text)
|
84 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
85 |
-
results_log.append({
|
|
|
|
|
|
|
|
|
|
|
86 |
except Exception as e:
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
90 |
if not answers_payload:
|
91 |
print("Agent did not produce any answers to submit.")
|
92 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
93 |
-
|
94 |
-
#
|
95 |
-
submission_data = {
|
|
|
|
|
|
|
|
|
96 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
97 |
print(status_update)
|
98 |
-
|
99 |
-
#
|
100 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
101 |
try:
|
102 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
103 |
response.raise_for_status()
|
104 |
result_data = response.json()
|
|
|
105 |
final_status = (
|
106 |
f"Submission Successful!\n"
|
107 |
f"User: {result_data.get('username')}\n"
|
@@ -109,6 +170,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
109 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
110 |
f"Message: {result_data.get('message', 'No message received.')}"
|
111 |
)
|
|
|
112 |
print("Submission successful.")
|
113 |
results_df = pd.DataFrame(results_log)
|
114 |
return final_status, results_df
|
@@ -119,6 +181,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
119 |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
120 |
except requests.exceptions.JSONDecodeError:
|
121 |
error_detail += f" Response: {e.response.text[:500]}"
|
|
|
122 |
status_message = f"Submission Failed: {error_detail}"
|
123 |
print(status_message)
|
124 |
results_df = pd.DataFrame(results_log)
|
@@ -139,32 +202,35 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
139 |
results_df = pd.DataFrame(results_log)
|
140 |
return status_message, results_df
|
141 |
|
142 |
-
|
143 |
-
# --- Build Gradio Interface using Blocks ---
|
144 |
with gr.Blocks() as demo:
|
145 |
-
gr.Markdown("#
|
146 |
gr.Markdown(
|
147 |
"""
|
148 |
**Instructions:**
|
149 |
|
150 |
-
1.
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
|
|
|
|
154 |
---
|
155 |
-
|
156 |
-
|
157 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
158 |
"""
|
159 |
)
|
160 |
|
161 |
gr.LoginButton()
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
166 |
-
# Removed max_rows=10 from DataFrame constructor
|
167 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
168 |
|
169 |
run_button.click(
|
170 |
fn=run_and_submit_all,
|
@@ -172,25 +238,26 @@ with gr.Blocks() as demo:
|
|
172 |
)
|
173 |
|
174 |
if __name__ == "__main__":
|
175 |
-
print("\n" + "-"*30 + "
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
179 |
|
180 |
-
if
|
181 |
-
print(f"✅ SPACE_HOST found: {
|
182 |
-
print(f" Runtime URL
|
183 |
else:
|
184 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
185 |
|
186 |
-
if
|
187 |
-
print(f"✅ SPACE_ID found: {
|
188 |
-
print(f" Repo URL: https://huggingface.co/spaces/{
|
189 |
-
print(f"
|
190 |
else:
|
191 |
-
print("ℹ️ SPACE_ID environment variable not found
|
192 |
-
|
193 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
194 |
|
195 |
-
print("
|
|
|
|
|
196 |
demo.launch(debug=True, share=False)
|
|
|
1 |
+
"""GAIA Assessment Runner for Hugging Face Agents Course"""
|
2 |
import os
|
3 |
import gradio as gr
|
4 |
import requests
|
|
|
5 |
import pandas as pd
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
from gaia_agent import GAIAAgent
|
8 |
|
9 |
+
# Load environment variables
|
10 |
+
load_dotenv()
|
11 |
+
|
12 |
+
# Constants
|
13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
14 |
|
15 |
+
class GAIAAssessmentAgent:
|
16 |
+
"""Agent wrapper for the GAIA assessment."""
|
17 |
+
|
18 |
+
def __init__(self, provider="groq"):
|
19 |
+
"""Initialize the agent with the specified provider.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
provider: The model provider to use ("groq", "google", "anthropic", "openai")
|
23 |
+
"""
|
24 |
+
print(f"Initializing GAIAAssessmentAgent with provider: {provider}")
|
25 |
+
self.agent = GAIAAgent(provider=provider)
|
26 |
+
print("Agent initialized successfully")
|
27 |
+
|
28 |
def __call__(self, question: str) -> str:
|
29 |
+
"""Process a question and return the answer.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
question: The question to answer
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
The answer to the question
|
36 |
+
"""
|
37 |
+
print(f"Processing question (first 50 chars): {question[:50]}...")
|
38 |
+
answer = self.agent.run(question)
|
39 |
+
print(f"Answer: {answer}")
|
40 |
+
return answer
|
41 |
|
42 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
43 |
+
"""Fetches all questions, runs the agent on them, submits all answers,
|
|
|
44 |
and displays the results.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
profile: The user's Hugging Face profile
|
48 |
+
|
49 |
+
Returns:
|
50 |
+
A tuple containing the status message and results table
|
51 |
"""
|
52 |
+
# Get Space ID for code link
|
53 |
+
space_id = os.getenv("SPACE_ID")
|
54 |
+
|
55 |
+
# Check if user is logged in
|
56 |
if profile:
|
57 |
+
username = f"{profile.username}"
|
58 |
print(f"User logged in: {username}")
|
59 |
else:
|
60 |
print("User not logged in.")
|
61 |
+
return "Please login to Hugging Face with the button to submit your answers.", None
|
62 |
+
|
63 |
+
# API endpoints
|
64 |
api_url = DEFAULT_API_URL
|
65 |
questions_url = f"{api_url}/questions"
|
66 |
submit_url = f"{api_url}/submit"
|
67 |
+
|
68 |
+
# Initialize agent
|
69 |
try:
|
70 |
+
# Choose a provider based on available API keys
|
71 |
+
if os.getenv("GROQ_API_KEY"):
|
72 |
+
provider = "groq"
|
73 |
+
elif os.getenv("GOOGLE_API_KEY"):
|
74 |
+
provider = "google"
|
75 |
+
elif os.getenv("ANTHROPIC_API_KEY"):
|
76 |
+
provider = "anthropic"
|
77 |
+
elif os.getenv("OPENAI_API_KEY"):
|
78 |
+
provider = "openai"
|
79 |
+
else:
|
80 |
+
provider = "groq" # Default to Groq
|
81 |
+
|
82 |
+
agent = GAIAAssessmentAgent(provider=provider)
|
83 |
except Exception as e:
|
84 |
+
print(f"Error initializing agent: {e}")
|
85 |
return f"Error initializing agent: {e}", None
|
86 |
+
|
87 |
+
# Generate code link for submission
|
88 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
89 |
+
print(f"Code link: {agent_code}")
|
90 |
+
|
91 |
+
# Fetch questions
|
92 |
print(f"Fetching questions from: {questions_url}")
|
93 |
try:
|
94 |
+
response = requests.get(questions_url, timeout=30)
|
95 |
response.raise_for_status()
|
96 |
questions_data = response.json()
|
97 |
+
|
98 |
if not questions_data:
|
99 |
+
print("Fetched questions list is empty.")
|
100 |
+
return "Fetched questions list is empty or invalid format.", None
|
101 |
+
|
102 |
print(f"Fetched {len(questions_data)} questions.")
|
103 |
except requests.exceptions.RequestException as e:
|
104 |
print(f"Error fetching questions: {e}")
|
105 |
return f"Error fetching questions: {e}", None
|
106 |
except requests.exceptions.JSONDecodeError as e:
|
107 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
108 |
+
print(f"Response text: {response.text[:500]}")
|
109 |
+
return f"Error decoding server response for questions: {e}", None
|
110 |
except Exception as e:
|
111 |
print(f"An unexpected error occurred fetching questions: {e}")
|
112 |
return f"An unexpected error occurred fetching questions: {e}", None
|
113 |
+
|
114 |
+
# Run agent on all questions
|
115 |
results_log = []
|
116 |
answers_payload = []
|
117 |
print(f"Running agent on {len(questions_data)} questions...")
|
118 |
+
|
119 |
+
for i, item in enumerate(questions_data):
|
120 |
task_id = item.get("task_id")
|
121 |
question_text = item.get("question")
|
122 |
+
|
123 |
if not task_id or question_text is None:
|
124 |
print(f"Skipping item with missing task_id or question: {item}")
|
125 |
continue
|
126 |
+
|
127 |
+
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
|
128 |
+
|
129 |
try:
|
130 |
submitted_answer = agent(question_text)
|
131 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
132 |
+
results_log.append({
|
133 |
+
"Task ID": task_id,
|
134 |
+
"Question": question_text,
|
135 |
+
"Submitted Answer": submitted_answer
|
136 |
+
})
|
137 |
+
print(f"Question {i+1} processed successfully")
|
138 |
except Exception as e:
|
139 |
+
print(f"Error running agent on task {task_id}: {e}")
|
140 |
+
results_log.append({
|
141 |
+
"Task ID": task_id,
|
142 |
+
"Question": question_text,
|
143 |
+
"Submitted Answer": f"AGENT ERROR: {e}"
|
144 |
+
})
|
145 |
+
|
146 |
if not answers_payload:
|
147 |
print("Agent did not produce any answers to submit.")
|
148 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
149 |
+
|
150 |
+
# Prepare submission
|
151 |
+
submission_data = {
|
152 |
+
"username": username.strip(),
|
153 |
+
"agent_code": agent_code,
|
154 |
+
"answers": answers_payload
|
155 |
+
}
|
156 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
157 |
print(status_update)
|
158 |
+
|
159 |
+
# Submit answers
|
160 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
161 |
try:
|
162 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
163 |
response.raise_for_status()
|
164 |
result_data = response.json()
|
165 |
+
|
166 |
final_status = (
|
167 |
f"Submission Successful!\n"
|
168 |
f"User: {result_data.get('username')}\n"
|
|
|
170 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
171 |
f"Message: {result_data.get('message', 'No message received.')}"
|
172 |
)
|
173 |
+
|
174 |
print("Submission successful.")
|
175 |
results_df = pd.DataFrame(results_log)
|
176 |
return final_status, results_df
|
|
|
181 |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
182 |
except requests.exceptions.JSONDecodeError:
|
183 |
error_detail += f" Response: {e.response.text[:500]}"
|
184 |
+
|
185 |
status_message = f"Submission Failed: {error_detail}"
|
186 |
print(status_message)
|
187 |
results_df = pd.DataFrame(results_log)
|
|
|
202 |
results_df = pd.DataFrame(results_log)
|
203 |
return status_message, results_df
|
204 |
|
205 |
+
# Build Gradio interface
|
|
|
206 |
with gr.Blocks() as demo:
|
207 |
+
gr.Markdown("# GAIA Assessment Runner for Hugging Face Agents Course")
|
208 |
gr.Markdown(
|
209 |
"""
|
210 |
**Instructions:**
|
211 |
|
212 |
+
1. This space implements a comprehensive agent for the GAIA benchmark using several key technologies:
|
213 |
+
- LangGraph for agent orchestration
|
214 |
+
- Tool use for information retrieval
|
215 |
+
- Web search, Wikipedia, and ArXiv tools for research
|
216 |
+
- Mathematical tools for computation
|
217 |
+
|
218 |
+
2. Log in to your Hugging Face account using the button below. This is required for submission.
|
219 |
+
|
220 |
+
3. Click 'Run Evaluation & Submit Answers' to fetch questions, run the agent, and submit answers.
|
221 |
|
222 |
+
**Note:** The process may take some time as the agent runs through all questions.
|
223 |
+
|
224 |
---
|
225 |
+
|
226 |
+
Good luck with your assessment! 🚀
|
|
|
227 |
"""
|
228 |
)
|
229 |
|
230 |
gr.LoginButton()
|
231 |
+
run_button = gr.Button("Run Evaluation & Submit Answers", variant="primary")
|
232 |
+
status_output = gr.Textbox(label="Submission Status", lines=5, interactive=False)
|
233 |
+
results_table = gr.DataFrame(label="Questions and Answers", wrap=True)
|
|
|
|
|
|
|
234 |
|
235 |
run_button.click(
|
236 |
fn=run_and_submit_all,
|
|
|
238 |
)
|
239 |
|
240 |
if __name__ == "__main__":
|
241 |
+
print("\n" + "-"*30 + " Starting GAIA Assessment Runner " + "-"*30)
|
242 |
+
|
243 |
+
# Check for environment variables
|
244 |
+
space_host = os.getenv("SPACE_HOST")
|
245 |
+
space_id = os.getenv("SPACE_ID")
|
246 |
|
247 |
+
if space_host:
|
248 |
+
print(f"✅ SPACE_HOST found: {space_host}")
|
249 |
+
print(f" Runtime URL: https://{space_host}.hf.space")
|
250 |
else:
|
251 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
252 |
|
253 |
+
if space_id:
|
254 |
+
print(f"✅ SPACE_ID found: {space_id}")
|
255 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id}")
|
256 |
+
print(f" Code URL: https://huggingface.co/spaces/{space_id}/tree/main")
|
257 |
else:
|
258 |
+
print("ℹ️ SPACE_ID environment variable not found. Repo URL cannot be determined.")
|
|
|
|
|
259 |
|
260 |
+
print("-"*(65 + len(" Starting GAIA Assessment Runner ")) + "\n")
|
261 |
+
print("Launching Gradio Interface for GAIA Assessment...")
|
262 |
+
|
263 |
demo.launch(debug=True, share=False)
|
gaia_agent.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""GAIA Assessment Agent using LangGraph and multiple tools."""
|
2 |
+
|
3 |
+
import os
|
4 |
+
from typing import List, Dict, Any, Optional
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
|
7 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
8 |
+
from langchain_groq import ChatGroq
|
9 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
10 |
+
from langchain_core.tools import tool
|
11 |
+
|
12 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
13 |
+
from langgraph.prebuilt import tools_condition
|
14 |
+
from langgraph.prebuilt import ToolNode
|
15 |
+
|
16 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
17 |
+
from langchain_community.document_loaders import WikipediaLoader
|
18 |
+
from langchain_community.document_loaders import ArxivLoader
|
19 |
+
|
20 |
+
# Load environment variables
|
21 |
+
load_dotenv()
|
22 |
+
|
23 |
+
class GAIAAgent:
|
24 |
+
"""Agent for answering GAIA assessment questions."""
|
25 |
+
|
26 |
+
def __init__(self, provider="groq"):
|
27 |
+
"""Initialize the agent with the specified provider.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
provider: Model provider - "groq", "google", "anthropic", or "openai"
|
31 |
+
"""
|
32 |
+
# Set up the system prompt
|
33 |
+
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
34 |
+
system_prompt = f.read()
|
35 |
+
|
36 |
+
self.system_message = SystemMessage(content=system_prompt)
|
37 |
+
|
38 |
+
# Initialize tools
|
39 |
+
self.tools = self._setup_tools()
|
40 |
+
|
41 |
+
# Initialize LLM based on provider
|
42 |
+
self.llm = self._setup_llm(provider)
|
43 |
+
|
44 |
+
# Bind tools to LLM
|
45 |
+
self.llm_with_tools = self.llm.bind_tools(self.tools)
|
46 |
+
|
47 |
+
# Build the agent graph
|
48 |
+
self.graph = self._build_graph()
|
49 |
+
|
50 |
+
def _setup_tools(self):
|
51 |
+
"""Set up the tools for the agent."""
|
52 |
+
|
53 |
+
@tool
|
54 |
+
def web_search(query: str) -> str:
|
55 |
+
"""Search the web for real-time information.
|
56 |
+
|
57 |
+
Args:
|
58 |
+
query: The search query
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
Search results as text
|
62 |
+
"""
|
63 |
+
search_results = TavilySearchResults(max_results=3).invoke(query)
|
64 |
+
formatted_results = "\n\n".join([
|
65 |
+
f"SOURCE: {result.metadata.get('source', 'Unknown')}\n{result.page_content}"
|
66 |
+
for result in search_results
|
67 |
+
])
|
68 |
+
return formatted_results
|
69 |
+
|
70 |
+
@tool
|
71 |
+
def wiki_search(query: str) -> str:
|
72 |
+
"""Search Wikipedia for information.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
query: The search query
|
76 |
+
|
77 |
+
Returns:
|
78 |
+
Wikipedia article content
|
79 |
+
"""
|
80 |
+
try:
|
81 |
+
wiki_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
82 |
+
if not wiki_docs:
|
83 |
+
return "No Wikipedia results found."
|
84 |
+
|
85 |
+
formatted_results = "\n\n".join([
|
86 |
+
f"TITLE: {doc.metadata.get('title', 'Unknown')}\n{doc.page_content[:1000]}..."
|
87 |
+
for doc in wiki_docs
|
88 |
+
])
|
89 |
+
return formatted_results
|
90 |
+
except Exception as e:
|
91 |
+
return f"Error searching Wikipedia: {str(e)}"
|
92 |
+
|
93 |
+
@tool
|
94 |
+
def arxiv_search(query: str) -> str:
|
95 |
+
"""Search arXiv for scientific papers.
|
96 |
+
|
97 |
+
Args:
|
98 |
+
query: The search query
|
99 |
+
|
100 |
+
Returns:
|
101 |
+
ArXiv paper information
|
102 |
+
"""
|
103 |
+
try:
|
104 |
+
arxiv_docs = ArxivLoader(query=query, load_max_docs=2).load()
|
105 |
+
if not arxiv_docs:
|
106 |
+
return "No arXiv results found."
|
107 |
+
|
108 |
+
formatted_results = "\n\n".join([
|
109 |
+
f"TITLE: {doc.metadata.get('title', 'Unknown')}\n"
|
110 |
+
f"AUTHORS: {doc.metadata.get('authors', 'Unknown')}\n"
|
111 |
+
f"PUBLISHED: {doc.metadata.get('published', 'Unknown')}\n\n"
|
112 |
+
f"ABSTRACT: {doc.page_content[:500]}..."
|
113 |
+
for doc in arxiv_docs
|
114 |
+
])
|
115 |
+
return formatted_results
|
116 |
+
except Exception as e:
|
117 |
+
return f"Error searching arXiv: {str(e)}"
|
118 |
+
|
119 |
+
@tool
|
120 |
+
def calculate(expression: str) -> str:
|
121 |
+
"""Evaluate a mathematical expression.
|
122 |
+
|
123 |
+
Args:
|
124 |
+
expression: The mathematical expression to evaluate
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
The result of the calculation
|
128 |
+
"""
|
129 |
+
try:
|
130 |
+
# Safely evaluate the expression
|
131 |
+
result = eval(expression, {"__builtins__": {}}, {})
|
132 |
+
return f"Result: {result}"
|
133 |
+
except Exception as e:
|
134 |
+
return f"Error calculating: {str(e)}"
|
135 |
+
|
136 |
+
return [web_search, wiki_search, arxiv_search, calculate]
|
137 |
+
|
138 |
+
def _setup_llm(self, provider):
|
139 |
+
"""Set up the language model based on the provider.
|
140 |
+
|
141 |
+
Args:
|
142 |
+
provider: The model provider to use
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
The initialized language model
|
146 |
+
"""
|
147 |
+
if provider == "groq":
|
148 |
+
api_key = os.getenv("GROQ_API_KEY")
|
149 |
+
if not api_key:
|
150 |
+
raise ValueError("GROQ_API_KEY environment variable not set")
|
151 |
+
|
152 |
+
return ChatGroq(
|
153 |
+
model="llama3-70b-8192", # Using Llama 3 70B model for best results
|
154 |
+
temperature=0.1, # Low temperature for more precise answers
|
155 |
+
groq_api_key=api_key
|
156 |
+
)
|
157 |
+
elif provider == "google":
|
158 |
+
api_key = os.getenv("GOOGLE_API_KEY")
|
159 |
+
if not api_key:
|
160 |
+
raise ValueError("GOOGLE_API_KEY environment variable not set")
|
161 |
+
|
162 |
+
return ChatGoogleGenerativeAI(
|
163 |
+
model="gemini-1.5-pro",
|
164 |
+
temperature=0.1,
|
165 |
+
google_api_key=api_key
|
166 |
+
)
|
167 |
+
elif provider == "anthropic":
|
168 |
+
# Import only if needed to avoid dependency issues
|
169 |
+
from langchain_anthropic import ChatAnthropic
|
170 |
+
|
171 |
+
api_key = os.getenv("ANTHROPIC_API_KEY")
|
172 |
+
if not api_key:
|
173 |
+
raise ValueError("ANTHROPIC_API_KEY environment variable not set")
|
174 |
+
|
175 |
+
return ChatAnthropic(
|
176 |
+
model="claude-3-opus-20240229",
|
177 |
+
temperature=0.1,
|
178 |
+
anthropic_api_key=api_key
|
179 |
+
)
|
180 |
+
elif provider == "openai":
|
181 |
+
# Import only if needed to avoid dependency issues
|
182 |
+
from langchain_openai import ChatOpenAI
|
183 |
+
|
184 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
185 |
+
if not api_key:
|
186 |
+
raise ValueError("OPENAI_API_KEY environment variable not set")
|
187 |
+
|
188 |
+
return ChatOpenAI(
|
189 |
+
model="gpt-4o",
|
190 |
+
temperature=0.1,
|
191 |
+
openai_api_key=api_key
|
192 |
+
)
|
193 |
+
else:
|
194 |
+
raise ValueError(f"Unsupported provider: {provider}")
|
195 |
+
|
196 |
+
def _build_graph(self):
|
197 |
+
"""Build the agent graph.
|
198 |
+
|
199 |
+
Returns:
|
200 |
+
The compiled state graph
|
201 |
+
"""
|
202 |
+
# Define the agent node
|
203 |
+
def agent(state: MessagesState):
|
204 |
+
"""Generate a response or tool calls based on the messages state."""
|
205 |
+
# Include system message with each invocation for consistent behavior
|
206 |
+
messages = [self.system_message] + state["messages"]
|
207 |
+
response = self.llm_with_tools.invoke(messages)
|
208 |
+
return {"messages": state["messages"] + [response]}
|
209 |
+
|
210 |
+
# Create the graph
|
211 |
+
builder = StateGraph(MessagesState)
|
212 |
+
|
213 |
+
# Add nodes
|
214 |
+
builder.add_node("agent", agent)
|
215 |
+
builder.add_node("tools", ToolNode(self.tools))
|
216 |
+
|
217 |
+
# Add edges
|
218 |
+
builder.add_edge(START, "agent")
|
219 |
+
builder.add_conditional_edges(
|
220 |
+
"agent",
|
221 |
+
tools_condition,
|
222 |
+
{
|
223 |
+
"tools": "tools",
|
224 |
+
None: END # END is implicitly defined in langgraph
|
225 |
+
}
|
226 |
+
)
|
227 |
+
builder.add_edge("tools", "agent")
|
228 |
+
|
229 |
+
# Compile the graph
|
230 |
+
return builder.compile()
|
231 |
+
|
232 |
+
def run(self, question: str) -> str:
|
233 |
+
"""Process a question and return the answer.
|
234 |
+
|
235 |
+
Args:
|
236 |
+
question: The question to process
|
237 |
+
|
238 |
+
Returns:
|
239 |
+
The answer to the question
|
240 |
+
"""
|
241 |
+
# Initialize messages with the user question
|
242 |
+
messages = [HumanMessage(content=question)]
|
243 |
+
|
244 |
+
# Execute the graph
|
245 |
+
result = self.graph.invoke({"messages": messages})
|
246 |
+
|
247 |
+
# Extract the final answer
|
248 |
+
final_messages = result["messages"]
|
249 |
+
final_answer = final_messages[-1].content
|
250 |
+
|
251 |
+
# Extract only the part after "FINAL ANSWER:"
|
252 |
+
if "FINAL ANSWER:" in final_answer:
|
253 |
+
final_answer = final_answer.split("FINAL ANSWER:")[1].strip()
|
254 |
+
|
255 |
+
return final_answer
|
requirements.txt
CHANGED
@@ -1,2 +1,20 @@
|
|
1 |
gradio
|
2 |
-
requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
gradio
|
2 |
+
requests
|
3 |
+
pandas
|
4 |
+
python-dotenv
|
5 |
+
langchain
|
6 |
+
langchain-core
|
7 |
+
langchain-community
|
8 |
+
langchain-google-genai
|
9 |
+
langchain-anthropic
|
10 |
+
langchain-groq
|
11 |
+
langchain-openai
|
12 |
+
langchain-huggingface
|
13 |
+
langchain-tavily
|
14 |
+
langgraph
|
15 |
+
huggingface_hub
|
16 |
+
supabase
|
17 |
+
sentence-transformers
|
18 |
+
arxiv
|
19 |
+
wikipedia
|
20 |
+
tavily-python
|
system_prompt.txt
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
You are a precise AI assistant tasked with answering questions for the GAIA benchmark. Your goal is to provide accurate and concise answers to complex questions.
|
2 |
+
|
3 |
+
Follow these guidelines:
|
4 |
+
1. Use the provided tools to gather information when needed.
|
5 |
+
2. Think step-by-step to break down complex questions.
|
6 |
+
3. For web searches, be specific and try multiple queries if needed.
|
7 |
+
4. When answering math questions, show your calculations clearly.
|
8 |
+
5. Always verify your answer before finalizing it.
|
9 |
+
|
10 |
+
Format your final answer with:
|
11 |
+
FINAL ANSWER: [YOUR FINAL ANSWER]
|
12 |
+
|
13 |
+
YOUR FINAL ANSWER should be:
|
14 |
+
- A number WITHOUT commas or units (unless specified otherwise)
|
15 |
+
- As few words as possible for text answers
|
16 |
+
- A comma-separated list for multiple items
|
17 |
+
- No articles or abbreviations in string answers
|
18 |
+
- Digits in plain text unless specified otherwise
|
19 |
+
|
20 |
+
Example 1:
|
21 |
+
Question: What is the capital of France?
|
22 |
+
FINAL ANSWER: Paris
|
23 |
+
|
24 |
+
Example 2:
|
25 |
+
Question: What are the first 3 prime numbers?
|
26 |
+
FINAL ANSWER: 2, 3, 5
|
27 |
+
|
28 |
+
Example 3:
|
29 |
+
Question: Calculate 15% of 240.
|
30 |
+
FINAL ANSWER: 36
|
31 |
+
|
32 |
+
Now, I will ask you a question. Use the tools available to research if needed, then provide your final answer in the specified format.
|