Spaces:
Sleeping
Sleeping
Remove llama_cpp and use hosted model
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
-
from utils.helper_functions import *
|
3 |
import os
|
4 |
import pandas as pd
|
5 |
import json
|
@@ -10,10 +11,12 @@ from sklearn.feature_extraction.text import TfidfVectorizer
|
|
10 |
from sklearn.preprocessing import LabelEncoder
|
11 |
from sklearn.model_selection import train_test_split
|
12 |
from xgboost import XGBClassifier
|
13 |
-
from
|
14 |
|
|
|
15 |
st.set_page_config(page_title="Counselor Assistant", layout="centered")
|
16 |
|
|
|
17 |
st.markdown("""
|
18 |
<style>
|
19 |
.main { background-color: #f9f9f9; padding: 1rem 2rem; border-radius: 12px; }
|
@@ -23,23 +26,26 @@ st.markdown("""
|
|
23 |
</style>
|
24 |
""", unsafe_allow_html=True)
|
25 |
|
|
|
26 |
st.title("π§ Mental Health Counselor Assistant")
|
27 |
st.markdown("""
|
28 |
-
|
29 |
|
30 |
-
This tool
|
31 |
|
32 |
-
###
|
33 |
-
- π§© Predicts
|
34 |
-
- π¬ Generates
|
35 |
-
-
|
36 |
|
37 |
-
|
38 |
""")
|
39 |
|
|
|
40 |
df = pd.read_csv("dataset/Kaggle_Mental_Health_Conversations_train.csv")
|
41 |
df = df[['Context', 'Response']].dropna().copy()
|
42 |
|
|
|
43 |
keywords_to_labels = {
|
44 |
'advice': ['try', 'should', 'suggest', 'recommend'],
|
45 |
'validation': ['understand', 'feel', 'valid', 'normal'],
|
@@ -57,14 +63,20 @@ def auto_label_response(response):
|
|
57 |
df['response_type'] = df['Response'].apply(auto_label_response)
|
58 |
df['combined_text'] = df['Context'] + " " + df['Response']
|
59 |
|
|
|
60 |
le = LabelEncoder()
|
61 |
y = le.fit_transform(df['response_type'])
|
62 |
|
|
|
63 |
vectorizer = TfidfVectorizer(max_features=2000, ngram_range=(1, 2))
|
64 |
X = vectorizer.fit_transform(df['combined_text'])
|
65 |
|
66 |
-
|
|
|
|
|
|
|
67 |
|
|
|
68 |
xgb_model = XGBClassifier(
|
69 |
objective='multi:softmax',
|
70 |
num_class=len(le.classes_),
|
@@ -76,13 +88,22 @@ xgb_model = XGBClassifier(
|
|
76 |
)
|
77 |
xgb_model.fit(X_train, y_train)
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
|
|
|
|
|
85 |
|
|
|
|
|
|
|
86 |
def predict_response_type(user_input):
|
87 |
vec = vectorizer.transform([user_input])
|
88 |
pred = xgb_model.predict(vec)
|
@@ -103,37 +124,47 @@ def generate_llm_response(user_input, response_type):
|
|
103 |
prompt = build_prompt(user_input, response_type)
|
104 |
start = time.time()
|
105 |
with st.spinner("Thinking through a helpful response for your patient..."):
|
106 |
-
result = llm(prompt,
|
107 |
end = time.time()
|
108 |
st.info(f"Response generated in {end - start:.1f} seconds")
|
109 |
-
return result[
|
110 |
|
111 |
def trim_memory(history, max_turns=6):
|
112 |
return history[-max_turns * 2:]
|
113 |
|
114 |
def save_conversation(history):
|
115 |
-
now = datetime.now().strftime("%Y-%m-%
|
116 |
-
with open("
|
117 |
writer = csv.writer(f)
|
118 |
-
writer.writerow(["
|
119 |
for entry in history:
|
120 |
writer.writerow([
|
121 |
-
now,
|
122 |
entry.get("role", ""),
|
123 |
entry.get("content", ""),
|
124 |
entry.get("label", ""),
|
125 |
-
round(float(entry.get("confidence", 0))
|
126 |
])
|
127 |
-
st.success("Saved to
|
128 |
|
|
|
129 |
if "history" not in st.session_state:
|
130 |
st.session_state.history = []
|
131 |
if "user_input" not in st.session_state:
|
132 |
st.session_state.user_input = ""
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
MAX_WORDS = 1000
|
135 |
word_count = len(st.session_state.user_input.split())
|
136 |
st.markdown(f"**π Input Length:** {word_count} / {MAX_WORDS} words")
|
|
|
137 |
st.session_state.user_input = st.text_area(
|
138 |
"π¬ What did your patient say?",
|
139 |
value=st.session_state.user_input,
|
@@ -141,6 +172,7 @@ st.session_state.user_input = st.text_area(
|
|
141 |
height=100
|
142 |
)
|
143 |
|
|
|
144 |
col1, col2, col3 = st.columns([2, 1, 1])
|
145 |
with col1:
|
146 |
send = st.button("π‘ Suggest Response")
|
@@ -149,13 +181,19 @@ with col2:
|
|
149 |
with col3:
|
150 |
reset = st.button("π Reset")
|
151 |
|
|
|
152 |
if send and st.session_state.user_input:
|
153 |
user_input = st.session_state.user_input
|
154 |
predicted_type, confidence = predict_response_type(user_input)
|
155 |
reply = generate_llm_response(user_input, predicted_type)
|
156 |
|
157 |
st.session_state.history.append({"role": "user", "content": user_input})
|
158 |
-
st.session_state.history.append({
|
|
|
|
|
|
|
|
|
|
|
159 |
st.session_state.history = trim_memory(st.session_state.history)
|
160 |
|
161 |
if save:
|
@@ -166,12 +204,13 @@ if reset:
|
|
166 |
st.session_state.user_input = ""
|
167 |
st.success("Conversation has been cleared.")
|
168 |
|
|
|
169 |
st.markdown("---")
|
170 |
for turn in st.session_state.history:
|
171 |
if turn["role"] == "user":
|
172 |
st.markdown(f"π§ββοΈ **Patient:** {turn['content']}")
|
173 |
else:
|
174 |
-
st.markdown(f"
|
175 |
st.caption(f"_Intent: {turn['label']} (Confidence: {turn['confidence']:.0%})_")
|
176 |
st.markdown("---")
|
177 |
|
|
|
1 |
+
# Streamlit App: Counselor Assistant (XGBoost + Selectable LLMs from Hugging Face)
|
2 |
+
|
3 |
import streamlit as st
|
|
|
4 |
import os
|
5 |
import pandas as pd
|
6 |
import json
|
|
|
11 |
from sklearn.preprocessing import LabelEncoder
|
12 |
from sklearn.model_selection import train_test_split
|
13 |
from xgboost import XGBClassifier
|
14 |
+
from transformers import pipeline
|
15 |
|
16 |
+
# --- Page Setup ---
|
17 |
st.set_page_config(page_title="Counselor Assistant", layout="centered")
|
18 |
|
19 |
+
# --- Styling ---
|
20 |
st.markdown("""
|
21 |
<style>
|
22 |
.main { background-color: #f9f9f9; padding: 1rem 2rem; border-radius: 12px; }
|
|
|
26 |
</style>
|
27 |
""", unsafe_allow_html=True)
|
28 |
|
29 |
+
# --- App Header ---
|
30 |
st.title("π§ Mental Health Counselor Assistant")
|
31 |
st.markdown("""
|
32 |
+
Welcome, counselor π
|
33 |
|
34 |
+
This tool offers **AI-powered suggestions** to support you when responding to your patients.
|
35 |
|
36 |
+
### What it does:
|
37 |
+
- π§© Predicts what type of support is best: *Advice*, *Validation*, *Information*, or *Question*
|
38 |
+
- π¬ Generates an LLM-powered suggestion for you
|
39 |
+
- πΎ Lets you save your session for reflection
|
40 |
|
41 |
+
This is here to support β not replace β your clinical instincts π
|
42 |
""")
|
43 |
|
44 |
+
# --- Load and label dataset ---
|
45 |
df = pd.read_csv("dataset/Kaggle_Mental_Health_Conversations_train.csv")
|
46 |
df = df[['Context', 'Response']].dropna().copy()
|
47 |
|
48 |
+
# Auto-labeling: heuristics for labeling responses
|
49 |
keywords_to_labels = {
|
50 |
'advice': ['try', 'should', 'suggest', 'recommend'],
|
51 |
'validation': ['understand', 'feel', 'valid', 'normal'],
|
|
|
63 |
df['response_type'] = df['Response'].apply(auto_label_response)
|
64 |
df['combined_text'] = df['Context'] + " " + df['Response']
|
65 |
|
66 |
+
# Encode labels
|
67 |
le = LabelEncoder()
|
68 |
y = le.fit_transform(df['response_type'])
|
69 |
|
70 |
+
# TF-IDF vectorizer on combined text
|
71 |
vectorizer = TfidfVectorizer(max_features=2000, ngram_range=(1, 2))
|
72 |
X = vectorizer.fit_transform(df['combined_text'])
|
73 |
|
74 |
+
# Train-test split
|
75 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
76 |
+
X, y, test_size=0.2, stratify=y, random_state=42
|
77 |
+
)
|
78 |
|
79 |
+
# XGBoost Classifier
|
80 |
xgb_model = XGBClassifier(
|
81 |
objective='multi:softmax',
|
82 |
num_class=len(le.classes_),
|
|
|
88 |
)
|
89 |
xgb_model.fit(X_train, y_train)
|
90 |
|
91 |
+
# --- Select Model Option ---
|
92 |
+
model_options = {
|
93 |
+
"google/flan-t5-base": "β
Flan-T5 (Fast, Clean)",
|
94 |
+
"declare-lab/flan-alpaca-gpt4-xl": "π¬ Flan Alpaca GPT4 (Human-sounding)",
|
95 |
+
"google/flan-ul2": "π§ Flan-UL2 (Deeper reasoning)"
|
96 |
+
}
|
97 |
+
|
98 |
+
model_choice = st.selectbox("π§ Choose a Response Model", list(model_options.keys()), format_func=lambda x: model_options[x])
|
99 |
|
100 |
+
@st.cache_resource(show_spinner="Loading selected language model...")
|
101 |
+
def load_llm(model_name):
|
102 |
+
return pipeline("text2text-generation", model=model_name)
|
103 |
|
104 |
+
llm = load_llm(model_choice)
|
105 |
+
|
106 |
+
# --- Utility Functions ---
|
107 |
def predict_response_type(user_input):
|
108 |
vec = vectorizer.transform([user_input])
|
109 |
pred = xgb_model.predict(vec)
|
|
|
124 |
prompt = build_prompt(user_input, response_type)
|
125 |
start = time.time()
|
126 |
with st.spinner("Thinking through a helpful response for your patient..."):
|
127 |
+
result = llm(prompt, max_length=150, do_sample=True, temperature=0.7)
|
128 |
end = time.time()
|
129 |
st.info(f"Response generated in {end - start:.1f} seconds")
|
130 |
+
return result[0]["generated_text"].strip()
|
131 |
|
132 |
def trim_memory(history, max_turns=6):
|
133 |
return history[-max_turns * 2:]
|
134 |
|
135 |
def save_conversation(history):
|
136 |
+
now = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
137 |
+
with open(f"chat_log_{now}.csv", "w", newline='') as f:
|
138 |
writer = csv.writer(f)
|
139 |
+
writer.writerow(["Role", "Content", "Intent", "Confidence"])
|
140 |
for entry in history:
|
141 |
writer.writerow([
|
|
|
142 |
entry.get("role", ""),
|
143 |
entry.get("content", ""),
|
144 |
entry.get("label", ""),
|
145 |
+
round(float(entry.get("confidence", 0)) * 100)
|
146 |
])
|
147 |
+
st.success(f"Saved to chat_log_{now}.csv")
|
148 |
|
149 |
+
# --- Session State Setup ---
|
150 |
if "history" not in st.session_state:
|
151 |
st.session_state.history = []
|
152 |
if "user_input" not in st.session_state:
|
153 |
st.session_state.user_input = ""
|
154 |
|
155 |
+
# --- Display Sample Prompts ---
|
156 |
+
with st.expander("π‘ Sample inputs you can try"):
|
157 |
+
st.markdown("""
|
158 |
+
- My patient is constantly feeling overwhelmed at work.
|
159 |
+
- A student says they panic every time they have to speak in class.
|
160 |
+
- Someone told me they think theyβll never feel okay again.
|
161 |
+
""")
|
162 |
+
|
163 |
+
# --- Text Area + Word Counter ---
|
164 |
MAX_WORDS = 1000
|
165 |
word_count = len(st.session_state.user_input.split())
|
166 |
st.markdown(f"**π Input Length:** {word_count} / {MAX_WORDS} words")
|
167 |
+
|
168 |
st.session_state.user_input = st.text_area(
|
169 |
"π¬ What did your patient say?",
|
170 |
value=st.session_state.user_input,
|
|
|
172 |
height=100
|
173 |
)
|
174 |
|
175 |
+
# --- Button Layout ---
|
176 |
col1, col2, col3 = st.columns([2, 1, 1])
|
177 |
with col1:
|
178 |
send = st.button("π‘ Suggest Response")
|
|
|
181 |
with col3:
|
182 |
reset = st.button("π Reset")
|
183 |
|
184 |
+
# --- Button Logic ---
|
185 |
if send and st.session_state.user_input:
|
186 |
user_input = st.session_state.user_input
|
187 |
predicted_type, confidence = predict_response_type(user_input)
|
188 |
reply = generate_llm_response(user_input, predicted_type)
|
189 |
|
190 |
st.session_state.history.append({"role": "user", "content": user_input})
|
191 |
+
st.session_state.history.append({
|
192 |
+
"role": "assistant",
|
193 |
+
"content": reply,
|
194 |
+
"label": predicted_type,
|
195 |
+
"confidence": confidence
|
196 |
+
})
|
197 |
st.session_state.history = trim_memory(st.session_state.history)
|
198 |
|
199 |
if save:
|
|
|
204 |
st.session_state.user_input = ""
|
205 |
st.success("Conversation has been cleared.")
|
206 |
|
207 |
+
# --- Chat History Display ---
|
208 |
st.markdown("---")
|
209 |
for turn in st.session_state.history:
|
210 |
if turn["role"] == "user":
|
211 |
st.markdown(f"π§ββοΈ **Patient:** {turn['content']}")
|
212 |
else:
|
213 |
+
st.markdown(f"π©ββοΈπ¨ββοΈ **Suggested Counselor Response:** {turn['content']}")
|
214 |
st.caption(f"_Intent: {turn['label']} (Confidence: {turn['confidence']:.0%})_")
|
215 |
st.markdown("---")
|
216 |
|