mental_health_chatbot / app_with_Mistral7B.py
scdong's picture
Initial commit of mental_health_chatbot app
fe336db
import streamlit as st
from utils.helper_functions import *
import os
import pandas as pd
import json
import time
import csv
from datetime import datetime
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
from llama_cpp import Llama
st.set_page_config(page_title="Counselor Assistant", layout="centered")
st.markdown("""
<style>
.main { background-color: #f9f9f9; padding: 1rem 2rem; border-radius: 12px; }
h1 { color: #2c3e50; text-align: center; font-size: 2.4rem; }
.user { color: #1f77b4; font-weight: bold; }
.assistant { color: #2ca02c; font-weight: bold; }
</style>
""", unsafe_allow_html=True)
st.title("🧠 Mental Health Counselor Assistant")
st.markdown("""
Hi there, counselor πŸ‘‹
This tool is here to offer **supportive, AI-generated suggestions** when you’re not quite sure how to respond to a patient.
### How it helps:
- 🧩 Predicts the type of support your patient might need (advice, validation, information, & question.)
- πŸ’¬ Generates a supportive counselor response
- πŸ“ Lets you save and track conversations for reflection
It's a sidekick, not a substitute for your clinical judgment πŸ’š
""")
df = pd.read_csv("dataset/Kaggle_Mental_Health_Conversations_train.csv")
df = df[['Context', 'Response']].dropna().copy()
keywords_to_labels = {
'advice': ['try', 'should', 'suggest', 'recommend'],
'validation': ['understand', 'feel', 'valid', 'normal'],
'information': ['cause', 'often', 'disorder', 'symptom'],
'question': ['how', 'what', 'why', 'have you']
}
def auto_label_response(response):
response = response.lower()
for label, keywords in keywords_to_labels.items():
if any(word in response for word in keywords):
return label
return 'information'
df['response_type'] = df['Response'].apply(auto_label_response)
df['combined_text'] = df['Context'] + " " + df['Response']
le = LabelEncoder()
y = le.fit_transform(df['response_type'])
vectorizer = TfidfVectorizer(max_features=2000, ngram_range=(1, 2))
X = vectorizer.fit_transform(df['combined_text'])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)
xgb_model = XGBClassifier(
objective='multi:softmax',
num_class=len(le.classes_),
eval_metric='mlogloss',
use_label_encoder=False,
max_depth=6,
learning_rate=0.1,
n_estimators=100
)
xgb_model.fit(X_train, y_train)
MODEL_PATH = os.path.expanduser("/Users/Pi/models/mistral/mistral-7b-instruct-v0.1.Q4_K_M.gguf")
@st.cache_resource(show_spinner=True)
def load_llm():
return Llama(model_path=MODEL_PATH, n_ctx=2048, n_threads=os.cpu_count())
llm = load_llm()
def predict_response_type(user_input):
vec = vectorizer.transform([user_input])
pred = xgb_model.predict(vec)
proba = xgb_model.predict_proba(vec).max()
label = le.inverse_transform(pred)[0]
return label, proba
def build_prompt(user_input, response_type):
prompts = {
"advice": f"A patient said: \"{user_input}\". What advice should a mental health counselor give to support them?",
"validation": f"A patient said: \"{user_input}\". How can a counselor validate and empathize with their emotions?",
"information": f"A patient said: \"{user_input}\". Explain what might be happening from a mental health perspective.",
"question": f"A patient said: \"{user_input}\". What thoughtful follow-up questions should a counselor ask?"
}
return prompts.get(response_type, prompts["information"])
def generate_llm_response(user_input, response_type):
prompt = build_prompt(user_input, response_type)
start = time.time()
with st.spinner("Thinking through a helpful response for your patient..."):
result = llm(prompt, max_tokens=300, temperature=0.7)
end = time.time()
st.info(f"Response generated in {end - start:.1f} seconds")
return result['choices'][0]['text'].strip()
def trim_memory(history, max_turns=6):
return history[-max_turns * 2:]
def save_conversation(history):
now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
with open("logs/chat_log_combined.csv", "w", newline='') as f:
writer = csv.writer(f)
writer.writerow(["Timestamp", "Role", "Content", "Intent", "Confidence"])
for entry in history:
writer.writerow([
now,
entry.get("role", ""),
entry.get("content", ""),
entry.get("label", ""),
round(float(entry.get("confidence", 0)), 2)
])
st.success("Saved to chat_log_combined.csv")
if "history" not in st.session_state:
st.session_state.history = []
if "user_input" not in st.session_state:
st.session_state.user_input = ""
MAX_WORDS = 1000
word_count = len(st.session_state.user_input.split())
st.markdown(f"**πŸ“ Input Length:** {word_count} / {MAX_WORDS} words")
st.session_state.user_input = st.text_area(
"πŸ’¬ What did your patient say?",
value=st.session_state.user_input,
placeholder="e.g. I just feel like I'm never going to get better.",
height=100
)
col1, col2, col3 = st.columns([2, 1, 1])
with col1:
send = st.button("πŸ’‘ Suggest Response")
with col2:
save = st.button("πŸ“ Save This")
with col3:
reset = st.button("πŸ” Reset")
if send and st.session_state.user_input:
user_input = st.session_state.user_input
predicted_type, confidence = predict_response_type(user_input)
reply = generate_llm_response(user_input, predicted_type)
st.session_state.history.append({"role": "user", "content": user_input})
st.session_state.history.append({"role": "assistant", "content": reply, "label": predicted_type, "confidence": confidence})
st.session_state.history = trim_memory(st.session_state.history)
if save:
save_conversation(st.session_state.history)
if reset:
st.session_state.history = []
st.session_state.user_input = ""
st.success("Conversation has been cleared.")
st.markdown("---")
for turn in st.session_state.history:
if turn["role"] == "user":
st.markdown(f"πŸ§β€β™€οΈ **Patient:** {turn['content']}")
else:
st.markdown(f"πŸ‘¨β€βš•οΈ **Suggested Counselor Response:** {turn['content']}")
st.caption(f"_Intent: {turn['label']} (Confidence: {turn['confidence']:.0%})_")
st.markdown("---")