Spaces:
Running
Running
Upload 11 files
Browse files- LICENSE +201 -0
- README.md +11 -8
- SoniTranslate_Colab.ipynb +124 -0
- app.py +2 -0
- app_rvc.py +0 -0
- packages.txt +3 -0
- pre-requirements.txt +17 -0
- requirements.txt +19 -0
- requirements_xtts.txt +58 -0
- vci_pipeline.py +454 -0
- voice_main.py +732 -0
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
CHANGED
@@ -1,13 +1,16 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
-
app_file:
|
9 |
-
pinned:
|
10 |
-
license:
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Quantum_Dubbing (Quantum_Dubbing)
|
3 |
+
emoji: 🌍
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.31.3
|
8 |
+
app_file: app_rvc.py
|
9 |
+
pinned: true
|
10 |
+
license: mit
|
11 |
+
short_description: Video Dubbing with Open Source Projects
|
12 |
+
preload_from_hub:
|
13 |
+
- Systran/faster-whisper-large-v3
|
14 |
---
|
15 |
|
16 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
SoniTranslate_Colab.ipynb
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"gpuType": "T4",
|
8 |
+
"include_colab_link": true
|
9 |
+
},
|
10 |
+
"kernelspec": {
|
11 |
+
"name": "python3",
|
12 |
+
"display_name": "Python 3"
|
13 |
+
},
|
14 |
+
"language_info": {
|
15 |
+
"name": "python"
|
16 |
+
},
|
17 |
+
"accelerator": "GPU"
|
18 |
+
},
|
19 |
+
"cells": [
|
20 |
+
{
|
21 |
+
"cell_type": "markdown",
|
22 |
+
"metadata": {
|
23 |
+
"id": "view-in-github",
|
24 |
+
"colab_type": "text"
|
25 |
+
},
|
26 |
+
"source": [
|
27 |
+
"<a href=\"https://colab.research.google.com/github/R3gm/SoniTranslate/blob/main/SoniTranslate_Colab.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "markdown",
|
32 |
+
"source": [
|
33 |
+
"# SoniTranslate\n",
|
34 |
+
"\n",
|
35 |
+
"| Description | Link |\n",
|
36 |
+
"| ----------- | ---- |\n",
|
37 |
+
"| 🎉 Repository | [](https://github.com/R3gm/SoniTranslate/) |\n",
|
38 |
+
"| 🚀 Online Demo in HF | [](https://huggingface.co/spaces/r3gm/SoniTranslate_translate_audio_of_a_video_content) |\n",
|
39 |
+
"\n",
|
40 |
+
"\n"
|
41 |
+
],
|
42 |
+
"metadata": {
|
43 |
+
"id": "8lw0EgLex-YZ"
|
44 |
+
}
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"cell_type": "code",
|
48 |
+
"execution_count": null,
|
49 |
+
"metadata": {
|
50 |
+
"id": "LUgwm0rfx0_J",
|
51 |
+
"cellView": "form"
|
52 |
+
},
|
53 |
+
"outputs": [],
|
54 |
+
"source": [
|
55 |
+
"# @title Install requirements for SoniTranslate\n",
|
56 |
+
"!git clone https://github.com/r3gm/SoniTranslate.git\n",
|
57 |
+
"%cd SoniTranslate\n",
|
58 |
+
"\n",
|
59 |
+
"!apt install git-lfs\n",
|
60 |
+
"!git lfs install\n",
|
61 |
+
"\n",
|
62 |
+
"!sed -i 's|git+https://github.com/R3gm/whisperX.git@cuda_11_8|git+https://github.com/R3gm/whisperX.git@cuda_12_x|' requirements_base.txt\n",
|
63 |
+
"!pip install -q -r requirements_base.txt\n",
|
64 |
+
"!pip install -q -r requirements_extra.txt\n",
|
65 |
+
"!pip install -q ort-nightly-gpu --index-url=https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/ort-cuda-12-nightly/pypi/simple/\n",
|
66 |
+
"\n",
|
67 |
+
"Install_PIPER_TTS = True # @param {type:\"boolean\"}\n",
|
68 |
+
"\n",
|
69 |
+
"if Install_PIPER_TTS:\n",
|
70 |
+
" !pip install -q piper-tts==1.2.0\n",
|
71 |
+
"\n",
|
72 |
+
"Install_Coqui_XTTS = True # @param {type:\"boolean\"}\n",
|
73 |
+
"\n",
|
74 |
+
"if Install_Coqui_XTTS:\n",
|
75 |
+
" !pip install -q -r requirements_xtts.txt\n",
|
76 |
+
" !pip install -q TTS==0.21.1 --no-deps"
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"cell_type": "markdown",
|
81 |
+
"source": [
|
82 |
+
"One important step is to accept the license agreement for using Pyannote. You need to have an account on Hugging Face and `accept the license to use the models`: https://huggingface.co/pyannote/speaker-diarization and https://huggingface.co/pyannote/segmentation\n",
|
83 |
+
"\n",
|
84 |
+
"\n",
|
85 |
+
"\n",
|
86 |
+
"\n",
|
87 |
+
"Get your KEY TOKEN here: https://hf.co/settings/tokens"
|
88 |
+
],
|
89 |
+
"metadata": {
|
90 |
+
"id": "LTaTstXPXNg2"
|
91 |
+
}
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"cell_type": "code",
|
95 |
+
"source": [
|
96 |
+
"#@markdown # `RUN THE WEB APP`\n",
|
97 |
+
"YOUR_HF_TOKEN = \"\" #@param {type:'string'}\n",
|
98 |
+
"%env YOUR_HF_TOKEN={YOUR_HF_TOKEN}\n",
|
99 |
+
"theme = \"Taithrah/Minimal\" # @param [\"Taithrah/Minimal\", \"aliabid94/new-theme\", \"gstaff/xkcd\", \"ParityError/LimeFace\", \"abidlabs/pakistan\", \"rottenlittlecreature/Moon_Goblin\", \"ysharma/llamas\", \"gradio/dracula_revamped\"]\n",
|
100 |
+
"interface_language = \"english\" # @param ['arabic', 'azerbaijani', 'chinese_zh_cn', 'english', 'french', 'german', 'hindi', 'indonesian', 'italian', 'japanese', 'korean', 'marathi', 'polish', 'portuguese', 'russian', 'spanish', 'swedish', 'turkish', 'ukrainian', 'vietnamese']\n",
|
101 |
+
"verbosity_level = \"info\" # @param [\"debug\", \"info\", \"warning\", \"error\", \"critical\"]\n",
|
102 |
+
"\n",
|
103 |
+
"\n",
|
104 |
+
"%cd /content/SoniTranslate\n",
|
105 |
+
"!python app_rvc.py --theme {theme} --verbosity_level {verbosity_level} --language {interface_language} --public_url"
|
106 |
+
],
|
107 |
+
"metadata": {
|
108 |
+
"id": "XkhXfaFw4R4J",
|
109 |
+
"cellView": "form"
|
110 |
+
},
|
111 |
+
"execution_count": null,
|
112 |
+
"outputs": []
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "markdown",
|
116 |
+
"source": [
|
117 |
+
"Open the `public URL` when it appears"
|
118 |
+
],
|
119 |
+
"metadata": {
|
120 |
+
"id": "KJW3KrhZJh0u"
|
121 |
+
}
|
122 |
+
}
|
123 |
+
]
|
124 |
+
}
|
app.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.system("python app_rvc.py --language french --theme aliabid94/new-theme")
|
app_rvc.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
packages.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
git-lfs
|
2 |
+
aria2 -y
|
3 |
+
ffmpeg
|
pre-requirements.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pip==23.1.2
|
2 |
+
--extra-index-url https://download.pytorch.org/whl/cu121
|
3 |
+
torch==2.2.0 # +cu121
|
4 |
+
torchvision # <=0.17.0+cu121
|
5 |
+
torchaudio # <=2.2.0+cu121
|
6 |
+
ctranslate2<=4.4.0
|
7 |
+
yt-dlp
|
8 |
+
gradio==4.19.2
|
9 |
+
pydub==0.25.1
|
10 |
+
edge_tts==6.1.7
|
11 |
+
deep_translator==1.11.4
|
12 |
+
git+https://github.com/R3gm/[email protected]
|
13 |
+
git+https://github.com/R3gm/whisperX.git@cuda_12_x
|
14 |
+
nest_asyncio
|
15 |
+
gTTS
|
16 |
+
gradio_client==0.10.1
|
17 |
+
IPython
|
requirements.txt
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
praat-parselmouth>=0.4.3
|
2 |
+
pyworld==0.3.2
|
3 |
+
faiss-cpu==1.7.3
|
4 |
+
torchcrepe==0.0.20
|
5 |
+
ffmpeg-python>=0.2.0
|
6 |
+
fairseq==0.12.2
|
7 |
+
gdown
|
8 |
+
rarfile
|
9 |
+
transformers
|
10 |
+
accelerate
|
11 |
+
optimum
|
12 |
+
sentencepiece
|
13 |
+
srt
|
14 |
+
git+https://github.com/R3gm/openvoice_package.git@lite
|
15 |
+
openai==1.14.3
|
16 |
+
tiktoken==0.6.0
|
17 |
+
# Documents
|
18 |
+
pypdf==4.2.0
|
19 |
+
python-docx
|
requirements_xtts.txt
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# core deps
|
2 |
+
numpy==1.23.5
|
3 |
+
cython>=0.29.30
|
4 |
+
scipy>=1.11.2
|
5 |
+
torch
|
6 |
+
torchaudio
|
7 |
+
soundfile
|
8 |
+
librosa
|
9 |
+
scikit-learn
|
10 |
+
numba
|
11 |
+
inflect>=5.6.0
|
12 |
+
tqdm>=4.64.1
|
13 |
+
anyascii>=0.3.0
|
14 |
+
pyyaml>=6.0
|
15 |
+
fsspec>=2023.6.0 # <= 2023.9.1 makes aux tests fail
|
16 |
+
aiohttp>=3.8.1
|
17 |
+
packaging>=23.1
|
18 |
+
# deps for examples
|
19 |
+
flask>=2.0.1
|
20 |
+
# deps for inference
|
21 |
+
pysbd>=0.3.4
|
22 |
+
# deps for notebooks
|
23 |
+
umap-learn>=0.5.1
|
24 |
+
pandas
|
25 |
+
# deps for training
|
26 |
+
matplotlib
|
27 |
+
# coqui stack
|
28 |
+
trainer>=0.0.32
|
29 |
+
# config management
|
30 |
+
coqpit>=0.0.16
|
31 |
+
# chinese g2p deps
|
32 |
+
jieba
|
33 |
+
pypinyin
|
34 |
+
# korean
|
35 |
+
hangul_romanize
|
36 |
+
# gruut+supported langs
|
37 |
+
gruut[de,es,fr]==2.2.3
|
38 |
+
# deps for korean
|
39 |
+
jamo
|
40 |
+
nltk
|
41 |
+
g2pkk>=0.1.1
|
42 |
+
# deps for bangla
|
43 |
+
bangla
|
44 |
+
bnnumerizer
|
45 |
+
bnunicodenormalizer
|
46 |
+
#deps for tortoise
|
47 |
+
einops>=0.6.0
|
48 |
+
transformers
|
49 |
+
#deps for bark
|
50 |
+
encodec>=0.1.1
|
51 |
+
# deps for XTTS
|
52 |
+
unidecode>=1.3.2
|
53 |
+
num2words
|
54 |
+
spacy[ja]>=3
|
55 |
+
|
56 |
+
# after this
|
57 |
+
# pip install -r requirements_xtts.txt
|
58 |
+
# pip install TTS==0.21.1 --no-deps
|
vci_pipeline.py
ADDED
@@ -0,0 +1,454 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np, parselmouth, torch, pdb, sys
|
2 |
+
from time import time as ttime
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import scipy.signal as signal
|
5 |
+
import pyworld, os, traceback, faiss, librosa, torchcrepe
|
6 |
+
from scipy import signal
|
7 |
+
from functools import lru_cache
|
8 |
+
from quantum_dubbing.logging_setup import logger
|
9 |
+
|
10 |
+
now_dir = os.getcwd()
|
11 |
+
sys.path.append(now_dir)
|
12 |
+
|
13 |
+
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
|
14 |
+
|
15 |
+
input_audio_path2wav = {}
|
16 |
+
|
17 |
+
|
18 |
+
@lru_cache
|
19 |
+
def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
|
20 |
+
audio = input_audio_path2wav[input_audio_path]
|
21 |
+
f0, t = pyworld.harvest(
|
22 |
+
audio,
|
23 |
+
fs=fs,
|
24 |
+
f0_ceil=f0max,
|
25 |
+
f0_floor=f0min,
|
26 |
+
frame_period=frame_period,
|
27 |
+
)
|
28 |
+
f0 = pyworld.stonemask(audio, f0, t, fs)
|
29 |
+
return f0
|
30 |
+
|
31 |
+
|
32 |
+
def change_rms(data1, sr1, data2, sr2, rate): # 1 is the input audio, 2 is the output audio, rate is the proportion of 2
|
33 |
+
# print(data1.max(),data2.max())
|
34 |
+
rms1 = librosa.feature.rms(
|
35 |
+
y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
|
36 |
+
) # one dot every half second
|
37 |
+
rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
|
38 |
+
rms1 = torch.from_numpy(rms1)
|
39 |
+
rms1 = F.interpolate(
|
40 |
+
rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
|
41 |
+
).squeeze()
|
42 |
+
rms2 = torch.from_numpy(rms2)
|
43 |
+
rms2 = F.interpolate(
|
44 |
+
rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
|
45 |
+
).squeeze()
|
46 |
+
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
|
47 |
+
data2 *= (
|
48 |
+
torch.pow(rms1, torch.tensor(1 - rate))
|
49 |
+
* torch.pow(rms2, torch.tensor(rate - 1))
|
50 |
+
).numpy()
|
51 |
+
return data2
|
52 |
+
|
53 |
+
|
54 |
+
class VC(object):
|
55 |
+
def __init__(self, tgt_sr, config):
|
56 |
+
self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
|
57 |
+
config.x_pad,
|
58 |
+
config.x_query,
|
59 |
+
config.x_center,
|
60 |
+
config.x_max,
|
61 |
+
config.is_half,
|
62 |
+
)
|
63 |
+
self.sr = 16000 # hubert input sampling rate
|
64 |
+
self.window = 160 # points per frame
|
65 |
+
self.t_pad = self.sr * self.x_pad # Pad time before and after each bar
|
66 |
+
self.t_pad_tgt = tgt_sr * self.x_pad
|
67 |
+
self.t_pad2 = self.t_pad * 2
|
68 |
+
self.t_query = self.sr * self.x_query # Query time before and after the cut point
|
69 |
+
self.t_center = self.sr * self.x_center # Query point cut position
|
70 |
+
self.t_max = self.sr * self.x_max # Query-free duration threshold
|
71 |
+
self.device = config.device
|
72 |
+
|
73 |
+
def get_f0(
|
74 |
+
self,
|
75 |
+
input_audio_path,
|
76 |
+
x,
|
77 |
+
p_len,
|
78 |
+
f0_up_key,
|
79 |
+
f0_method,
|
80 |
+
filter_radius,
|
81 |
+
inp_f0=None,
|
82 |
+
):
|
83 |
+
global input_audio_path2wav
|
84 |
+
time_step = self.window / self.sr * 1000
|
85 |
+
f0_min = 50
|
86 |
+
f0_max = 1100
|
87 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
88 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
89 |
+
if f0_method == "pm":
|
90 |
+
f0 = (
|
91 |
+
parselmouth.Sound(x, self.sr)
|
92 |
+
.to_pitch_ac(
|
93 |
+
time_step=time_step / 1000,
|
94 |
+
voicing_threshold=0.6,
|
95 |
+
pitch_floor=f0_min,
|
96 |
+
pitch_ceiling=f0_max,
|
97 |
+
)
|
98 |
+
.selected_array["frequency"]
|
99 |
+
)
|
100 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
101 |
+
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
102 |
+
f0 = np.pad(
|
103 |
+
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
104 |
+
)
|
105 |
+
elif f0_method == "harvest":
|
106 |
+
input_audio_path2wav[input_audio_path] = x.astype(np.double)
|
107 |
+
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
|
108 |
+
if filter_radius > 2:
|
109 |
+
f0 = signal.medfilt(f0, 3)
|
110 |
+
elif f0_method == "crepe":
|
111 |
+
model = "full"
|
112 |
+
# Pick a batch size that doesn't cause memory errors on your gpu
|
113 |
+
batch_size = 512
|
114 |
+
# Compute pitch using first gpu
|
115 |
+
audio = torch.tensor(np.copy(x))[None].float()
|
116 |
+
f0, pd = torchcrepe.predict(
|
117 |
+
audio,
|
118 |
+
self.sr,
|
119 |
+
self.window,
|
120 |
+
f0_min,
|
121 |
+
f0_max,
|
122 |
+
model,
|
123 |
+
batch_size=batch_size,
|
124 |
+
device=self.device,
|
125 |
+
return_periodicity=True,
|
126 |
+
)
|
127 |
+
pd = torchcrepe.filter.median(pd, 3)
|
128 |
+
f0 = torchcrepe.filter.mean(f0, 3)
|
129 |
+
f0[pd < 0.1] = 0
|
130 |
+
f0 = f0[0].cpu().numpy()
|
131 |
+
elif "rmvpe" in f0_method:
|
132 |
+
if hasattr(self, "model_rmvpe") == False:
|
133 |
+
from lib.rmvpe import RMVPE
|
134 |
+
|
135 |
+
logger.info("Loading vocal pitch estimator model")
|
136 |
+
self.model_rmvpe = RMVPE(
|
137 |
+
"rmvpe.pt", is_half=self.is_half, device=self.device
|
138 |
+
)
|
139 |
+
thred = 0.03
|
140 |
+
if "+" in f0_method:
|
141 |
+
f0 = self.model_rmvpe.pitch_based_audio_inference(x, thred, f0_min, f0_max)
|
142 |
+
else:
|
143 |
+
f0 = self.model_rmvpe.infer_from_audio(x, thred)
|
144 |
+
|
145 |
+
f0 *= pow(2, f0_up_key / 12)
|
146 |
+
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
147 |
+
tf0 = self.sr // self.window # f0 points per second
|
148 |
+
if inp_f0 is not None:
|
149 |
+
delta_t = np.round(
|
150 |
+
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
|
151 |
+
).astype("int16")
|
152 |
+
replace_f0 = np.interp(
|
153 |
+
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
|
154 |
+
)
|
155 |
+
shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
|
156 |
+
f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
|
157 |
+
:shape
|
158 |
+
]
|
159 |
+
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
160 |
+
f0bak = f0.copy()
|
161 |
+
f0_mel = 1127 * np.log(1 + f0 / 700)
|
162 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
163 |
+
f0_mel_max - f0_mel_min
|
164 |
+
) + 1
|
165 |
+
f0_mel[f0_mel <= 1] = 1
|
166 |
+
f0_mel[f0_mel > 255] = 255
|
167 |
+
try:
|
168 |
+
f0_coarse = np.rint(f0_mel).astype(np.int)
|
169 |
+
except: # noqa
|
170 |
+
f0_coarse = np.rint(f0_mel).astype(int)
|
171 |
+
return f0_coarse, f0bak # 1-0
|
172 |
+
|
173 |
+
def vc(
|
174 |
+
self,
|
175 |
+
model,
|
176 |
+
net_g,
|
177 |
+
sid,
|
178 |
+
audio0,
|
179 |
+
pitch,
|
180 |
+
pitchf,
|
181 |
+
times,
|
182 |
+
index,
|
183 |
+
big_npy,
|
184 |
+
index_rate,
|
185 |
+
version,
|
186 |
+
protect,
|
187 |
+
): # ,file_index,file_big_npy
|
188 |
+
feats = torch.from_numpy(audio0)
|
189 |
+
if self.is_half:
|
190 |
+
feats = feats.half()
|
191 |
+
else:
|
192 |
+
feats = feats.float()
|
193 |
+
if feats.dim() == 2: # double channels
|
194 |
+
feats = feats.mean(-1)
|
195 |
+
assert feats.dim() == 1, feats.dim()
|
196 |
+
feats = feats.view(1, -1)
|
197 |
+
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
198 |
+
|
199 |
+
inputs = {
|
200 |
+
"source": feats.to(self.device),
|
201 |
+
"padding_mask": padding_mask,
|
202 |
+
"output_layer": 9 if version == "v1" else 12,
|
203 |
+
}
|
204 |
+
t0 = ttime()
|
205 |
+
with torch.no_grad():
|
206 |
+
logits = model.extract_features(**inputs)
|
207 |
+
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
|
208 |
+
if protect < 0.5 and pitch != None and pitchf != None:
|
209 |
+
feats0 = feats.clone()
|
210 |
+
if (
|
211 |
+
isinstance(index, type(None)) == False
|
212 |
+
and isinstance(big_npy, type(None)) == False
|
213 |
+
and index_rate != 0
|
214 |
+
):
|
215 |
+
npy = feats[0].cpu().numpy()
|
216 |
+
if self.is_half:
|
217 |
+
npy = npy.astype("float32")
|
218 |
+
|
219 |
+
# _, I = index.search(npy, 1)
|
220 |
+
# npy = big_npy[I.squeeze()]
|
221 |
+
|
222 |
+
score, ix = index.search(npy, k=8)
|
223 |
+
weight = np.square(1 / score)
|
224 |
+
weight /= weight.sum(axis=1, keepdims=True)
|
225 |
+
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
|
226 |
+
|
227 |
+
if self.is_half:
|
228 |
+
npy = npy.astype("float16")
|
229 |
+
feats = (
|
230 |
+
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
|
231 |
+
+ (1 - index_rate) * feats
|
232 |
+
)
|
233 |
+
|
234 |
+
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
235 |
+
if protect < 0.5 and pitch != None and pitchf != None:
|
236 |
+
feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
|
237 |
+
0, 2, 1
|
238 |
+
)
|
239 |
+
t1 = ttime()
|
240 |
+
p_len = audio0.shape[0] // self.window
|
241 |
+
if feats.shape[1] < p_len:
|
242 |
+
p_len = feats.shape[1]
|
243 |
+
if pitch != None and pitchf != None:
|
244 |
+
pitch = pitch[:, :p_len]
|
245 |
+
pitchf = pitchf[:, :p_len]
|
246 |
+
|
247 |
+
if protect < 0.5 and pitch != None and pitchf != None:
|
248 |
+
pitchff = pitchf.clone()
|
249 |
+
pitchff[pitchf > 0] = 1
|
250 |
+
pitchff[pitchf < 1] = protect
|
251 |
+
pitchff = pitchff.unsqueeze(-1)
|
252 |
+
feats = feats * pitchff + feats0 * (1 - pitchff)
|
253 |
+
feats = feats.to(feats0.dtype)
|
254 |
+
p_len = torch.tensor([p_len], device=self.device).long()
|
255 |
+
with torch.no_grad():
|
256 |
+
if pitch != None and pitchf != None:
|
257 |
+
audio1 = (
|
258 |
+
(net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
|
259 |
+
.data.cpu()
|
260 |
+
.float()
|
261 |
+
.numpy()
|
262 |
+
)
|
263 |
+
else:
|
264 |
+
audio1 = (
|
265 |
+
(net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
|
266 |
+
)
|
267 |
+
del feats, p_len, padding_mask
|
268 |
+
if torch.cuda.is_available():
|
269 |
+
torch.cuda.empty_cache()
|
270 |
+
t2 = ttime()
|
271 |
+
times[0] += t1 - t0
|
272 |
+
times[2] += t2 - t1
|
273 |
+
return audio1
|
274 |
+
|
275 |
+
def pipeline(
|
276 |
+
self,
|
277 |
+
model,
|
278 |
+
net_g,
|
279 |
+
sid,
|
280 |
+
audio,
|
281 |
+
input_audio_path,
|
282 |
+
times,
|
283 |
+
f0_up_key,
|
284 |
+
f0_method,
|
285 |
+
file_index,
|
286 |
+
# file_big_npy,
|
287 |
+
index_rate,
|
288 |
+
if_f0,
|
289 |
+
filter_radius,
|
290 |
+
tgt_sr,
|
291 |
+
resample_sr,
|
292 |
+
rms_mix_rate,
|
293 |
+
version,
|
294 |
+
protect,
|
295 |
+
f0_file=None,
|
296 |
+
):
|
297 |
+
if (
|
298 |
+
file_index != ""
|
299 |
+
# and file_big_npy != ""
|
300 |
+
# and os.path.exists(file_big_npy) == True
|
301 |
+
and os.path.exists(file_index) == True
|
302 |
+
and index_rate != 0
|
303 |
+
):
|
304 |
+
try:
|
305 |
+
index = faiss.read_index(file_index)
|
306 |
+
# big_npy = np.load(file_big_npy)
|
307 |
+
big_npy = index.reconstruct_n(0, index.ntotal)
|
308 |
+
except:
|
309 |
+
traceback.print_exc()
|
310 |
+
index = big_npy = None
|
311 |
+
else:
|
312 |
+
index = big_npy = None
|
313 |
+
logger.warning("File index Not found, set None")
|
314 |
+
|
315 |
+
audio = signal.filtfilt(bh, ah, audio)
|
316 |
+
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
|
317 |
+
opt_ts = []
|
318 |
+
if audio_pad.shape[0] > self.t_max:
|
319 |
+
audio_sum = np.zeros_like(audio)
|
320 |
+
for i in range(self.window):
|
321 |
+
audio_sum += audio_pad[i : i - self.window]
|
322 |
+
for t in range(self.t_center, audio.shape[0], self.t_center):
|
323 |
+
opt_ts.append(
|
324 |
+
t
|
325 |
+
- self.t_query
|
326 |
+
+ np.where(
|
327 |
+
np.abs(audio_sum[t - self.t_query : t + self.t_query])
|
328 |
+
== np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
|
329 |
+
)[0][0]
|
330 |
+
)
|
331 |
+
s = 0
|
332 |
+
audio_opt = []
|
333 |
+
t = None
|
334 |
+
t1 = ttime()
|
335 |
+
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
|
336 |
+
p_len = audio_pad.shape[0] // self.window
|
337 |
+
inp_f0 = None
|
338 |
+
if hasattr(f0_file, "name") == True:
|
339 |
+
try:
|
340 |
+
with open(f0_file.name, "r") as f:
|
341 |
+
lines = f.read().strip("\n").split("\n")
|
342 |
+
inp_f0 = []
|
343 |
+
for line in lines:
|
344 |
+
inp_f0.append([float(i) for i in line.split(",")])
|
345 |
+
inp_f0 = np.array(inp_f0, dtype="float32")
|
346 |
+
except:
|
347 |
+
traceback.print_exc()
|
348 |
+
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
349 |
+
pitch, pitchf = None, None
|
350 |
+
if if_f0 == 1:
|
351 |
+
pitch, pitchf = self.get_f0(
|
352 |
+
input_audio_path,
|
353 |
+
audio_pad,
|
354 |
+
p_len,
|
355 |
+
f0_up_key,
|
356 |
+
f0_method,
|
357 |
+
filter_radius,
|
358 |
+
inp_f0,
|
359 |
+
)
|
360 |
+
pitch = pitch[:p_len]
|
361 |
+
pitchf = pitchf[:p_len]
|
362 |
+
if self.device == "mps":
|
363 |
+
pitchf = pitchf.astype(np.float32)
|
364 |
+
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
|
365 |
+
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
|
366 |
+
t2 = ttime()
|
367 |
+
times[1] += t2 - t1
|
368 |
+
for t in opt_ts:
|
369 |
+
t = t // self.window * self.window
|
370 |
+
if if_f0 == 1:
|
371 |
+
audio_opt.append(
|
372 |
+
self.vc(
|
373 |
+
model,
|
374 |
+
net_g,
|
375 |
+
sid,
|
376 |
+
audio_pad[s : t + self.t_pad2 + self.window],
|
377 |
+
pitch[:, s // self.window : (t + self.t_pad2) // self.window],
|
378 |
+
pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
|
379 |
+
times,
|
380 |
+
index,
|
381 |
+
big_npy,
|
382 |
+
index_rate,
|
383 |
+
version,
|
384 |
+
protect,
|
385 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
386 |
+
)
|
387 |
+
else:
|
388 |
+
audio_opt.append(
|
389 |
+
self.vc(
|
390 |
+
model,
|
391 |
+
net_g,
|
392 |
+
sid,
|
393 |
+
audio_pad[s : t + self.t_pad2 + self.window],
|
394 |
+
None,
|
395 |
+
None,
|
396 |
+
times,
|
397 |
+
index,
|
398 |
+
big_npy,
|
399 |
+
index_rate,
|
400 |
+
version,
|
401 |
+
protect,
|
402 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
403 |
+
)
|
404 |
+
s = t
|
405 |
+
if if_f0 == 1:
|
406 |
+
audio_opt.append(
|
407 |
+
self.vc(
|
408 |
+
model,
|
409 |
+
net_g,
|
410 |
+
sid,
|
411 |
+
audio_pad[t:],
|
412 |
+
pitch[:, t // self.window :] if t is not None else pitch,
|
413 |
+
pitchf[:, t // self.window :] if t is not None else pitchf,
|
414 |
+
times,
|
415 |
+
index,
|
416 |
+
big_npy,
|
417 |
+
index_rate,
|
418 |
+
version,
|
419 |
+
protect,
|
420 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
421 |
+
)
|
422 |
+
else:
|
423 |
+
audio_opt.append(
|
424 |
+
self.vc(
|
425 |
+
model,
|
426 |
+
net_g,
|
427 |
+
sid,
|
428 |
+
audio_pad[t:],
|
429 |
+
None,
|
430 |
+
None,
|
431 |
+
times,
|
432 |
+
index,
|
433 |
+
big_npy,
|
434 |
+
index_rate,
|
435 |
+
version,
|
436 |
+
protect,
|
437 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
438 |
+
)
|
439 |
+
audio_opt = np.concatenate(audio_opt)
|
440 |
+
if rms_mix_rate != 1:
|
441 |
+
audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
|
442 |
+
if resample_sr >= 16000 and tgt_sr != resample_sr:
|
443 |
+
audio_opt = librosa.resample(
|
444 |
+
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
|
445 |
+
)
|
446 |
+
audio_max = np.abs(audio_opt).max() / 0.99
|
447 |
+
max_int16 = 32768
|
448 |
+
if audio_max > 1:
|
449 |
+
max_int16 /= audio_max
|
450 |
+
audio_opt = (audio_opt * max_int16).astype(np.int16)
|
451 |
+
del pitch, pitchf, sid
|
452 |
+
if torch.cuda.is_available():
|
453 |
+
torch.cuda.empty_cache()
|
454 |
+
return audio_opt
|
voice_main.py
ADDED
@@ -0,0 +1,732 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from quantum_dubbing.logging_setup import logger
|
2 |
+
import torch
|
3 |
+
import gc
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
+
import shutil
|
7 |
+
import warnings
|
8 |
+
import threading
|
9 |
+
from tqdm import tqdm
|
10 |
+
from lib.infer_pack.models import (
|
11 |
+
SynthesizerTrnMs256NSFsid,
|
12 |
+
SynthesizerTrnMs256NSFsid_nono,
|
13 |
+
SynthesizerTrnMs768NSFsid,
|
14 |
+
SynthesizerTrnMs768NSFsid_nono,
|
15 |
+
)
|
16 |
+
from lib.audio import load_audio
|
17 |
+
import soundfile as sf
|
18 |
+
import edge_tts
|
19 |
+
import asyncio
|
20 |
+
from quantum_dubbing.utils import remove_directory_contents, create_directories
|
21 |
+
from scipy import signal
|
22 |
+
from time import time as ttime
|
23 |
+
import faiss
|
24 |
+
from vci_pipeline import VC, change_rms, bh, ah
|
25 |
+
import librosa
|
26 |
+
|
27 |
+
warnings.filterwarnings("ignore")
|
28 |
+
|
29 |
+
|
30 |
+
class Config:
|
31 |
+
def __init__(self, only_cpu=False):
|
32 |
+
self.device = "cuda:0"
|
33 |
+
self.is_half = True
|
34 |
+
self.n_cpu = 0
|
35 |
+
self.gpu_name = None
|
36 |
+
self.gpu_mem = None
|
37 |
+
(
|
38 |
+
self.x_pad,
|
39 |
+
self.x_query,
|
40 |
+
self.x_center,
|
41 |
+
self.x_max
|
42 |
+
) = self.device_config(only_cpu)
|
43 |
+
|
44 |
+
def device_config(self, only_cpu) -> tuple:
|
45 |
+
if torch.cuda.is_available() and not only_cpu:
|
46 |
+
i_device = int(self.device.split(":")[-1])
|
47 |
+
self.gpu_name = torch.cuda.get_device_name(i_device)
|
48 |
+
if (
|
49 |
+
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
|
50 |
+
or "P40" in self.gpu_name.upper()
|
51 |
+
or "1060" in self.gpu_name
|
52 |
+
or "1070" in self.gpu_name
|
53 |
+
or "1080" in self.gpu_name
|
54 |
+
):
|
55 |
+
logger.info(
|
56 |
+
"16/10 Series GPUs and P40 excel "
|
57 |
+
"in single-precision tasks."
|
58 |
+
)
|
59 |
+
self.is_half = False
|
60 |
+
else:
|
61 |
+
self.gpu_name = None
|
62 |
+
self.gpu_mem = int(
|
63 |
+
torch.cuda.get_device_properties(i_device).total_memory
|
64 |
+
/ 1024
|
65 |
+
/ 1024
|
66 |
+
/ 1024
|
67 |
+
+ 0.4
|
68 |
+
)
|
69 |
+
elif torch.backends.mps.is_available() and not only_cpu:
|
70 |
+
logger.info("Supported N-card not found, using MPS for inference")
|
71 |
+
self.device = "mps"
|
72 |
+
else:
|
73 |
+
logger.info("No supported N-card found, using CPU for inference")
|
74 |
+
self.device = "cpu"
|
75 |
+
self.is_half = False
|
76 |
+
|
77 |
+
if self.n_cpu == 0:
|
78 |
+
self.n_cpu = os.cpu_count()
|
79 |
+
|
80 |
+
if self.is_half:
|
81 |
+
# 6GB VRAM configuration
|
82 |
+
x_pad = 3
|
83 |
+
x_query = 10
|
84 |
+
x_center = 60
|
85 |
+
x_max = 65
|
86 |
+
else:
|
87 |
+
# 5GB VRAM configuration
|
88 |
+
x_pad = 1
|
89 |
+
x_query = 6
|
90 |
+
x_center = 38
|
91 |
+
x_max = 41
|
92 |
+
|
93 |
+
if self.gpu_mem is not None and self.gpu_mem <= 4:
|
94 |
+
x_pad = 1
|
95 |
+
x_query = 5
|
96 |
+
x_center = 30
|
97 |
+
x_max = 32
|
98 |
+
|
99 |
+
logger.info(
|
100 |
+
f"Config: Device is {self.device}, "
|
101 |
+
f"half precision is {self.is_half}"
|
102 |
+
)
|
103 |
+
|
104 |
+
return x_pad, x_query, x_center, x_max
|
105 |
+
|
106 |
+
|
107 |
+
BASE_DOWNLOAD_LINK = "https://huggingface.co/r3gm/sonitranslate_voice_models/resolve/main/"
|
108 |
+
BASE_MODELS = [
|
109 |
+
"hubert_base.pt",
|
110 |
+
"rmvpe.pt"
|
111 |
+
]
|
112 |
+
BASE_DIR = "."
|
113 |
+
|
114 |
+
|
115 |
+
def load_hu_bert(config):
|
116 |
+
from fairseq import checkpoint_utils
|
117 |
+
from quantum_dubbing.utils import download_manager
|
118 |
+
|
119 |
+
for id_model in BASE_MODELS:
|
120 |
+
download_manager(
|
121 |
+
os.path.join(BASE_DOWNLOAD_LINK, id_model), BASE_DIR
|
122 |
+
)
|
123 |
+
|
124 |
+
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
125 |
+
["hubert_base.pt"],
|
126 |
+
suffix="",
|
127 |
+
)
|
128 |
+
hubert_model = models[0]
|
129 |
+
hubert_model = hubert_model.to(config.device)
|
130 |
+
if config.is_half:
|
131 |
+
hubert_model = hubert_model.half()
|
132 |
+
else:
|
133 |
+
hubert_model = hubert_model.float()
|
134 |
+
hubert_model.eval()
|
135 |
+
|
136 |
+
return hubert_model
|
137 |
+
|
138 |
+
|
139 |
+
def load_trained_model(model_path, config):
|
140 |
+
|
141 |
+
if not model_path:
|
142 |
+
raise ValueError("No model found")
|
143 |
+
|
144 |
+
logger.info("Loading %s" % model_path)
|
145 |
+
cpt = torch.load(model_path, map_location="cpu")
|
146 |
+
tgt_sr = cpt["config"][-1]
|
147 |
+
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
148 |
+
if_f0 = cpt.get("f0", 1)
|
149 |
+
if if_f0 == 0:
|
150 |
+
# protect to 0.5 need?
|
151 |
+
pass
|
152 |
+
|
153 |
+
version = cpt.get("version", "v1")
|
154 |
+
if version == "v1":
|
155 |
+
if if_f0 == 1:
|
156 |
+
net_g = SynthesizerTrnMs256NSFsid(
|
157 |
+
*cpt["config"], is_half=config.is_half
|
158 |
+
)
|
159 |
+
else:
|
160 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
161 |
+
elif version == "v2":
|
162 |
+
if if_f0 == 1:
|
163 |
+
net_g = SynthesizerTrnMs768NSFsid(
|
164 |
+
*cpt["config"], is_half=config.is_half
|
165 |
+
)
|
166 |
+
else:
|
167 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
168 |
+
del net_g.enc_q
|
169 |
+
|
170 |
+
net_g.load_state_dict(cpt["weight"], strict=False)
|
171 |
+
net_g.eval().to(config.device)
|
172 |
+
|
173 |
+
if config.is_half:
|
174 |
+
net_g = net_g.half()
|
175 |
+
else:
|
176 |
+
net_g = net_g.float()
|
177 |
+
|
178 |
+
vc = VC(tgt_sr, config)
|
179 |
+
n_spk = cpt["config"][-3]
|
180 |
+
|
181 |
+
return n_spk, tgt_sr, net_g, vc, cpt, version
|
182 |
+
|
183 |
+
|
184 |
+
class ClassVoices:
|
185 |
+
def __init__(self, only_cpu=False):
|
186 |
+
self.model_config = {}
|
187 |
+
self.config = None
|
188 |
+
self.only_cpu = only_cpu
|
189 |
+
|
190 |
+
def apply_conf(
|
191 |
+
self,
|
192 |
+
tag="base_model",
|
193 |
+
file_model="",
|
194 |
+
pitch_algo="pm",
|
195 |
+
pitch_lvl=0,
|
196 |
+
file_index="",
|
197 |
+
index_influence=0.66,
|
198 |
+
respiration_median_filtering=3,
|
199 |
+
envelope_ratio=0.25,
|
200 |
+
consonant_breath_protection=0.33,
|
201 |
+
resample_sr=0,
|
202 |
+
file_pitch_algo="",
|
203 |
+
):
|
204 |
+
|
205 |
+
if not file_model:
|
206 |
+
raise ValueError("Model not found")
|
207 |
+
|
208 |
+
if file_index is None:
|
209 |
+
file_index = ""
|
210 |
+
|
211 |
+
if file_pitch_algo is None:
|
212 |
+
file_pitch_algo = ""
|
213 |
+
|
214 |
+
if not self.config:
|
215 |
+
self.config = Config(self.only_cpu)
|
216 |
+
self.hu_bert_model = None
|
217 |
+
self.model_pitch_estimator = None
|
218 |
+
|
219 |
+
self.model_config[tag] = {
|
220 |
+
"file_model": file_model,
|
221 |
+
"pitch_algo": pitch_algo,
|
222 |
+
"pitch_lvl": pitch_lvl, # no decimal
|
223 |
+
"file_index": file_index,
|
224 |
+
"index_influence": index_influence,
|
225 |
+
"respiration_median_filtering": respiration_median_filtering,
|
226 |
+
"envelope_ratio": envelope_ratio,
|
227 |
+
"consonant_breath_protection": consonant_breath_protection,
|
228 |
+
"resample_sr": resample_sr,
|
229 |
+
"file_pitch_algo": file_pitch_algo,
|
230 |
+
}
|
231 |
+
return f"CONFIGURATION APPLIED FOR {tag}: {file_model}"
|
232 |
+
|
233 |
+
def infer(
|
234 |
+
self,
|
235 |
+
task_id,
|
236 |
+
params,
|
237 |
+
# load model
|
238 |
+
n_spk,
|
239 |
+
tgt_sr,
|
240 |
+
net_g,
|
241 |
+
pipe,
|
242 |
+
cpt,
|
243 |
+
version,
|
244 |
+
if_f0,
|
245 |
+
# load index
|
246 |
+
index_rate,
|
247 |
+
index,
|
248 |
+
big_npy,
|
249 |
+
# load f0 file
|
250 |
+
inp_f0,
|
251 |
+
# audio file
|
252 |
+
input_audio_path,
|
253 |
+
overwrite,
|
254 |
+
):
|
255 |
+
|
256 |
+
f0_method = params["pitch_algo"]
|
257 |
+
f0_up_key = params["pitch_lvl"]
|
258 |
+
filter_radius = params["respiration_median_filtering"]
|
259 |
+
resample_sr = params["resample_sr"]
|
260 |
+
rms_mix_rate = params["envelope_ratio"]
|
261 |
+
protect = params["consonant_breath_protection"]
|
262 |
+
|
263 |
+
if not os.path.exists(input_audio_path):
|
264 |
+
raise ValueError(
|
265 |
+
"The audio file was not found or is not "
|
266 |
+
f"a valid file: {input_audio_path}"
|
267 |
+
)
|
268 |
+
|
269 |
+
f0_up_key = int(f0_up_key)
|
270 |
+
|
271 |
+
audio = load_audio(input_audio_path, 16000)
|
272 |
+
|
273 |
+
# Normalize audio
|
274 |
+
audio_max = np.abs(audio).max() / 0.95
|
275 |
+
if audio_max > 1:
|
276 |
+
audio /= audio_max
|
277 |
+
|
278 |
+
times = [0, 0, 0]
|
279 |
+
|
280 |
+
# filters audio signal, pads it, computes sliding window sums,
|
281 |
+
# and extracts optimized time indices
|
282 |
+
audio = signal.filtfilt(bh, ah, audio)
|
283 |
+
audio_pad = np.pad(
|
284 |
+
audio, (pipe.window // 2, pipe.window // 2), mode="reflect"
|
285 |
+
)
|
286 |
+
opt_ts = []
|
287 |
+
if audio_pad.shape[0] > pipe.t_max:
|
288 |
+
audio_sum = np.zeros_like(audio)
|
289 |
+
for i in range(pipe.window):
|
290 |
+
audio_sum += audio_pad[i:i - pipe.window]
|
291 |
+
for t in range(pipe.t_center, audio.shape[0], pipe.t_center):
|
292 |
+
opt_ts.append(
|
293 |
+
t
|
294 |
+
- pipe.t_query
|
295 |
+
+ np.where(
|
296 |
+
np.abs(audio_sum[t - pipe.t_query: t + pipe.t_query])
|
297 |
+
== np.abs(audio_sum[t - pipe.t_query: t + pipe.t_query]).min()
|
298 |
+
)[0][0]
|
299 |
+
)
|
300 |
+
|
301 |
+
s = 0
|
302 |
+
audio_opt = []
|
303 |
+
t = None
|
304 |
+
t1 = ttime()
|
305 |
+
|
306 |
+
sid_value = 0
|
307 |
+
sid = torch.tensor(sid_value, device=pipe.device).unsqueeze(0).long()
|
308 |
+
|
309 |
+
# Pads audio symmetrically, calculates length divided by window size.
|
310 |
+
audio_pad = np.pad(audio, (pipe.t_pad, pipe.t_pad), mode="reflect")
|
311 |
+
p_len = audio_pad.shape[0] // pipe.window
|
312 |
+
|
313 |
+
# Estimates pitch from audio signal
|
314 |
+
pitch, pitchf = None, None
|
315 |
+
if if_f0 == 1:
|
316 |
+
pitch, pitchf = pipe.get_f0(
|
317 |
+
input_audio_path,
|
318 |
+
audio_pad,
|
319 |
+
p_len,
|
320 |
+
f0_up_key,
|
321 |
+
f0_method,
|
322 |
+
filter_radius,
|
323 |
+
inp_f0,
|
324 |
+
)
|
325 |
+
pitch = pitch[:p_len]
|
326 |
+
pitchf = pitchf[:p_len]
|
327 |
+
if pipe.device == "mps":
|
328 |
+
pitchf = pitchf.astype(np.float32)
|
329 |
+
pitch = torch.tensor(
|
330 |
+
pitch, device=pipe.device
|
331 |
+
).unsqueeze(0).long()
|
332 |
+
pitchf = torch.tensor(
|
333 |
+
pitchf, device=pipe.device
|
334 |
+
).unsqueeze(0).float()
|
335 |
+
|
336 |
+
t2 = ttime()
|
337 |
+
times[1] += t2 - t1
|
338 |
+
for t in opt_ts:
|
339 |
+
t = t // pipe.window * pipe.window
|
340 |
+
if if_f0 == 1:
|
341 |
+
pitch_slice = pitch[
|
342 |
+
:, s // pipe.window: (t + pipe.t_pad2) // pipe.window
|
343 |
+
]
|
344 |
+
pitchf_slice = pitchf[
|
345 |
+
:, s // pipe.window: (t + pipe.t_pad2) // pipe.window
|
346 |
+
]
|
347 |
+
else:
|
348 |
+
pitch_slice = None
|
349 |
+
pitchf_slice = None
|
350 |
+
|
351 |
+
audio_slice = audio_pad[s:t + pipe.t_pad2 + pipe.window]
|
352 |
+
audio_opt.append(
|
353 |
+
pipe.vc(
|
354 |
+
self.hu_bert_model,
|
355 |
+
net_g,
|
356 |
+
sid,
|
357 |
+
audio_slice,
|
358 |
+
pitch_slice,
|
359 |
+
pitchf_slice,
|
360 |
+
times,
|
361 |
+
index,
|
362 |
+
big_npy,
|
363 |
+
index_rate,
|
364 |
+
version,
|
365 |
+
protect,
|
366 |
+
)[pipe.t_pad_tgt:-pipe.t_pad_tgt]
|
367 |
+
)
|
368 |
+
s = t
|
369 |
+
|
370 |
+
pitch_end_slice = pitch[
|
371 |
+
:, t // pipe.window:
|
372 |
+
] if t is not None else pitch
|
373 |
+
pitchf_end_slice = pitchf[
|
374 |
+
:, t // pipe.window:
|
375 |
+
] if t is not None else pitchf
|
376 |
+
|
377 |
+
audio_opt.append(
|
378 |
+
pipe.vc(
|
379 |
+
self.hu_bert_model,
|
380 |
+
net_g,
|
381 |
+
sid,
|
382 |
+
audio_pad[t:],
|
383 |
+
pitch_end_slice,
|
384 |
+
pitchf_end_slice,
|
385 |
+
times,
|
386 |
+
index,
|
387 |
+
big_npy,
|
388 |
+
index_rate,
|
389 |
+
version,
|
390 |
+
protect,
|
391 |
+
)[pipe.t_pad_tgt:-pipe.t_pad_tgt]
|
392 |
+
)
|
393 |
+
|
394 |
+
audio_opt = np.concatenate(audio_opt)
|
395 |
+
if rms_mix_rate != 1:
|
396 |
+
audio_opt = change_rms(
|
397 |
+
audio, 16000, audio_opt, tgt_sr, rms_mix_rate
|
398 |
+
)
|
399 |
+
if resample_sr >= 16000 and tgt_sr != resample_sr:
|
400 |
+
audio_opt = librosa.resample(
|
401 |
+
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
|
402 |
+
)
|
403 |
+
audio_max = np.abs(audio_opt).max() / 0.99
|
404 |
+
max_int16 = 32768
|
405 |
+
if audio_max > 1:
|
406 |
+
max_int16 /= audio_max
|
407 |
+
audio_opt = (audio_opt * max_int16).astype(np.int16)
|
408 |
+
del pitch, pitchf, sid
|
409 |
+
if torch.cuda.is_available():
|
410 |
+
torch.cuda.empty_cache()
|
411 |
+
|
412 |
+
if tgt_sr != resample_sr >= 16000:
|
413 |
+
final_sr = resample_sr
|
414 |
+
else:
|
415 |
+
final_sr = tgt_sr
|
416 |
+
|
417 |
+
"""
|
418 |
+
"Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
|
419 |
+
times[0],
|
420 |
+
times[1],
|
421 |
+
times[2],
|
422 |
+
), (final_sr, audio_opt)
|
423 |
+
|
424 |
+
"""
|
425 |
+
|
426 |
+
if overwrite:
|
427 |
+
output_audio_path = input_audio_path # Overwrite
|
428 |
+
else:
|
429 |
+
basename = os.path.basename(input_audio_path)
|
430 |
+
dirname = os.path.dirname(input_audio_path)
|
431 |
+
|
432 |
+
new_basename = basename.split(
|
433 |
+
'.')[0] + "_edited." + basename.split('.')[-1]
|
434 |
+
new_path = os.path.join(dirname, new_basename)
|
435 |
+
logger.info(str(new_path))
|
436 |
+
|
437 |
+
output_audio_path = new_path
|
438 |
+
|
439 |
+
# Save file
|
440 |
+
sf.write(
|
441 |
+
file=output_audio_path,
|
442 |
+
samplerate=final_sr,
|
443 |
+
data=audio_opt
|
444 |
+
)
|
445 |
+
|
446 |
+
self.model_config[task_id]["result"].append(output_audio_path)
|
447 |
+
self.output_list.append(output_audio_path)
|
448 |
+
|
449 |
+
def make_test(
|
450 |
+
self,
|
451 |
+
tts_text,
|
452 |
+
tts_voice,
|
453 |
+
model_path,
|
454 |
+
index_path,
|
455 |
+
transpose,
|
456 |
+
f0_method,
|
457 |
+
):
|
458 |
+
|
459 |
+
folder_test = "test"
|
460 |
+
tag = "test_edge"
|
461 |
+
tts_file = "test/test.wav"
|
462 |
+
tts_edited = "test/test_edited.wav"
|
463 |
+
|
464 |
+
create_directories(folder_test)
|
465 |
+
remove_directory_contents(folder_test)
|
466 |
+
|
467 |
+
if "SET_LIMIT" == os.getenv("DEMO"):
|
468 |
+
if len(tts_text) > 60:
|
469 |
+
tts_text = tts_text[:60]
|
470 |
+
logger.warning("DEMO; limit to 60 characters")
|
471 |
+
|
472 |
+
try:
|
473 |
+
asyncio.run(edge_tts.Communicate(
|
474 |
+
tts_text, "-".join(tts_voice.split('-')[:-1])
|
475 |
+
).save(tts_file))
|
476 |
+
except Exception as e:
|
477 |
+
raise ValueError(
|
478 |
+
"No audio was received. Please change the "
|
479 |
+
f"tts voice for {tts_voice}. Error: {str(e)}"
|
480 |
+
)
|
481 |
+
|
482 |
+
shutil.copy(tts_file, tts_edited)
|
483 |
+
|
484 |
+
self.apply_conf(
|
485 |
+
tag=tag,
|
486 |
+
file_model=model_path,
|
487 |
+
pitch_algo=f0_method,
|
488 |
+
pitch_lvl=transpose,
|
489 |
+
file_index=index_path,
|
490 |
+
index_influence=0.66,
|
491 |
+
respiration_median_filtering=3,
|
492 |
+
envelope_ratio=0.25,
|
493 |
+
consonant_breath_protection=0.33,
|
494 |
+
)
|
495 |
+
|
496 |
+
self(
|
497 |
+
audio_files=tts_edited,
|
498 |
+
tag_list=tag,
|
499 |
+
overwrite=True
|
500 |
+
)
|
501 |
+
|
502 |
+
return tts_edited, tts_file
|
503 |
+
|
504 |
+
def run_threads(self, threads):
|
505 |
+
# Start threads
|
506 |
+
for thread in threads:
|
507 |
+
thread.start()
|
508 |
+
|
509 |
+
# Wait for all threads to finish
|
510 |
+
for thread in threads:
|
511 |
+
thread.join()
|
512 |
+
|
513 |
+
gc.collect()
|
514 |
+
torch.cuda.empty_cache()
|
515 |
+
|
516 |
+
def unload_models(self):
|
517 |
+
self.hu_bert_model = None
|
518 |
+
self.model_pitch_estimator = None
|
519 |
+
gc.collect()
|
520 |
+
torch.cuda.empty_cache()
|
521 |
+
|
522 |
+
def __call__(
|
523 |
+
self,
|
524 |
+
audio_files=[],
|
525 |
+
tag_list=[],
|
526 |
+
overwrite=False,
|
527 |
+
parallel_workers=1,
|
528 |
+
):
|
529 |
+
logger.info(f"Parallel workers: {str(parallel_workers)}")
|
530 |
+
|
531 |
+
self.output_list = []
|
532 |
+
|
533 |
+
if not self.model_config:
|
534 |
+
raise ValueError("No model has been configured for inference")
|
535 |
+
|
536 |
+
if isinstance(audio_files, str):
|
537 |
+
audio_files = [audio_files]
|
538 |
+
if isinstance(tag_list, str):
|
539 |
+
tag_list = [tag_list]
|
540 |
+
|
541 |
+
if not audio_files:
|
542 |
+
raise ValueError("No audio found to convert")
|
543 |
+
if not tag_list:
|
544 |
+
tag_list = [list(self.model_config.keys())[-1]] * len(audio_files)
|
545 |
+
|
546 |
+
if len(audio_files) > len(tag_list):
|
547 |
+
logger.info("Extend tag list to match audio files")
|
548 |
+
extend_number = len(audio_files) - len(tag_list)
|
549 |
+
tag_list.extend([tag_list[0]] * extend_number)
|
550 |
+
|
551 |
+
if len(audio_files) < len(tag_list):
|
552 |
+
logger.info("Cut list tags")
|
553 |
+
tag_list = tag_list[:len(audio_files)]
|
554 |
+
|
555 |
+
tag_file_pairs = list(zip(tag_list, audio_files))
|
556 |
+
sorted_tag_file = sorted(tag_file_pairs, key=lambda x: x[0])
|
557 |
+
|
558 |
+
# Base params
|
559 |
+
if not self.hu_bert_model:
|
560 |
+
self.hu_bert_model = load_hu_bert(self.config)
|
561 |
+
|
562 |
+
cache_params = None
|
563 |
+
threads = []
|
564 |
+
progress_bar = tqdm(total=len(tag_list), desc="Progress")
|
565 |
+
for i, (id_tag, input_audio_path) in enumerate(sorted_tag_file):
|
566 |
+
|
567 |
+
if id_tag not in self.model_config.keys():
|
568 |
+
logger.info(
|
569 |
+
f"No configured model for {id_tag} with {input_audio_path}"
|
570 |
+
)
|
571 |
+
continue
|
572 |
+
|
573 |
+
if (
|
574 |
+
len(threads) >= parallel_workers
|
575 |
+
or cache_params != id_tag
|
576 |
+
and cache_params is not None
|
577 |
+
):
|
578 |
+
|
579 |
+
self.run_threads(threads)
|
580 |
+
progress_bar.update(len(threads))
|
581 |
+
|
582 |
+
threads = []
|
583 |
+
|
584 |
+
if cache_params != id_tag:
|
585 |
+
|
586 |
+
self.model_config[id_tag]["result"] = []
|
587 |
+
|
588 |
+
# Unload previous
|
589 |
+
(
|
590 |
+
n_spk,
|
591 |
+
tgt_sr,
|
592 |
+
net_g,
|
593 |
+
pipe,
|
594 |
+
cpt,
|
595 |
+
version,
|
596 |
+
if_f0,
|
597 |
+
index_rate,
|
598 |
+
index,
|
599 |
+
big_npy,
|
600 |
+
inp_f0,
|
601 |
+
) = [None] * 11
|
602 |
+
gc.collect()
|
603 |
+
torch.cuda.empty_cache()
|
604 |
+
|
605 |
+
# Model params
|
606 |
+
params = self.model_config[id_tag]
|
607 |
+
|
608 |
+
model_path = params["file_model"]
|
609 |
+
f0_method = params["pitch_algo"]
|
610 |
+
file_index = params["file_index"]
|
611 |
+
index_rate = params["index_influence"]
|
612 |
+
f0_file = params["file_pitch_algo"]
|
613 |
+
|
614 |
+
# Load model
|
615 |
+
(
|
616 |
+
n_spk,
|
617 |
+
tgt_sr,
|
618 |
+
net_g,
|
619 |
+
pipe,
|
620 |
+
cpt,
|
621 |
+
version
|
622 |
+
) = load_trained_model(model_path, self.config)
|
623 |
+
if_f0 = cpt.get("f0", 1) # pitch data
|
624 |
+
|
625 |
+
# Load index
|
626 |
+
if os.path.exists(file_index) and index_rate != 0:
|
627 |
+
try:
|
628 |
+
index = faiss.read_index(file_index)
|
629 |
+
big_npy = index.reconstruct_n(0, index.ntotal)
|
630 |
+
except Exception as error:
|
631 |
+
logger.error(f"Index: {str(error)}")
|
632 |
+
index_rate = 0
|
633 |
+
index = big_npy = None
|
634 |
+
else:
|
635 |
+
logger.warning("File index not found")
|
636 |
+
index_rate = 0
|
637 |
+
index = big_npy = None
|
638 |
+
|
639 |
+
# Load f0 file
|
640 |
+
inp_f0 = None
|
641 |
+
if os.path.exists(f0_file):
|
642 |
+
try:
|
643 |
+
with open(f0_file, "r") as f:
|
644 |
+
lines = f.read().strip("\n").split("\n")
|
645 |
+
inp_f0 = []
|
646 |
+
for line in lines:
|
647 |
+
inp_f0.append([float(i) for i in line.split(",")])
|
648 |
+
inp_f0 = np.array(inp_f0, dtype="float32")
|
649 |
+
except Exception as error:
|
650 |
+
logger.error(f"f0 file: {str(error)}")
|
651 |
+
|
652 |
+
if "rmvpe" in f0_method:
|
653 |
+
if not self.model_pitch_estimator:
|
654 |
+
from lib.rmvpe import RMVPE
|
655 |
+
|
656 |
+
logger.info("Loading vocal pitch estimator model")
|
657 |
+
self.model_pitch_estimator = RMVPE(
|
658 |
+
"rmvpe.pt",
|
659 |
+
is_half=self.config.is_half,
|
660 |
+
device=self.config.device
|
661 |
+
)
|
662 |
+
|
663 |
+
pipe.model_rmvpe = self.model_pitch_estimator
|
664 |
+
|
665 |
+
cache_params = id_tag
|
666 |
+
|
667 |
+
# self.infer(
|
668 |
+
# id_tag,
|
669 |
+
# params,
|
670 |
+
# # load model
|
671 |
+
# n_spk,
|
672 |
+
# tgt_sr,
|
673 |
+
# net_g,
|
674 |
+
# pipe,
|
675 |
+
# cpt,
|
676 |
+
# version,
|
677 |
+
# if_f0,
|
678 |
+
# # load index
|
679 |
+
# index_rate,
|
680 |
+
# index,
|
681 |
+
# big_npy,
|
682 |
+
# # load f0 file
|
683 |
+
# inp_f0,
|
684 |
+
# # output file
|
685 |
+
# input_audio_path,
|
686 |
+
# overwrite,
|
687 |
+
# )
|
688 |
+
|
689 |
+
thread = threading.Thread(
|
690 |
+
target=self.infer,
|
691 |
+
args=(
|
692 |
+
id_tag,
|
693 |
+
params,
|
694 |
+
# loaded model
|
695 |
+
n_spk,
|
696 |
+
tgt_sr,
|
697 |
+
net_g,
|
698 |
+
pipe,
|
699 |
+
cpt,
|
700 |
+
version,
|
701 |
+
if_f0,
|
702 |
+
# loaded index
|
703 |
+
index_rate,
|
704 |
+
index,
|
705 |
+
big_npy,
|
706 |
+
# loaded f0 file
|
707 |
+
inp_f0,
|
708 |
+
# audio file
|
709 |
+
input_audio_path,
|
710 |
+
overwrite,
|
711 |
+
)
|
712 |
+
)
|
713 |
+
|
714 |
+
threads.append(thread)
|
715 |
+
|
716 |
+
# Run last
|
717 |
+
if threads:
|
718 |
+
self.run_threads(threads)
|
719 |
+
|
720 |
+
progress_bar.update(len(threads))
|
721 |
+
progress_bar.close()
|
722 |
+
|
723 |
+
final_result = []
|
724 |
+
valid_tags = set(tag_list)
|
725 |
+
for tag in valid_tags:
|
726 |
+
if (
|
727 |
+
tag in self.model_config.keys()
|
728 |
+
and "result" in self.model_config[tag].keys()
|
729 |
+
):
|
730 |
+
final_result.extend(self.model_config[tag]["result"])
|
731 |
+
|
732 |
+
return final_result
|