from transformers.tools.base import Tool, get_default_device from transformers.utils import is_accelerate_available import torch from diffusers import StableDiffusionInpaintPipeline INPAINTING_DESCRIPTION = ( "This is a tool that inpaints some parts of an image StableDiffusionInpaintPipeline according to a prompt." " It takes three inputs: `image`, which should be the original image which will be inpainted," " `mask_image`, which should be used to determine which parts of the original image" " (stored in the `image` variable) should be inpainted," " and `prompt`, which should be the prompt to use to guide the inpainting process. It returns the" " inpainted image." ) class InpaintingTool(Tool): default_checkpoint = "stabilityai/stable-diffusion-2-inpainting" description = INPAINTING_DESCRIPTION name = "image_inpainter" inputs = ['image', 'image', 'text'] outputs = ['image'] def __init__(self, device=None, **hub_kwargs) -> None: if not is_accelerate_available(): raise ImportError("Accelerate should be installed in order to use tools.") super().__init__() self.device = device self.pipeline = None self.hub_kwargs = hub_kwargs def setup(self): if self.device is None: self.device = get_default_device() self.pipeline = StableDiffusionInpaintPipeline.from_pretrained(self.default_checkpoint) self.pipeline.to(self.device) if self.device.type == "cuda": self.pipeline.to(torch_dtype=torch.float16) self.is_initialized = True def __call__(self, image, mask_image, prompt): if not self.is_initialized: self.setup() resized_image = image.resize((512, 512)) mask_image = mask_image.resize((512, 512)) # negative_prompt = "low quality, bad quality, deformed, low resolution" # added_prompt = " , highest quality, highly realistic, very high resolution" inpainted_image = self.pipeline( # prompt=prompt + added_prompt, # negative_prompt=negative_prompt, prompt=prompt, image=resized_image, mask_image=mask_image ).images[0] return inpainted_image.resize((image.size[0], image.size[1]))