sausheong's picture
added sd2
db60394
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, StableDiffusionUpscalePipeline, DiffusionPipeline, DPMSolverMultistepScheduler
import gradio as gr
import torch
from PIL import Image
state = None
current_steps = 25
model_id = 'stabilityai/stable-diffusion-2'
scheduler = DPMSolverMultistepScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionPipeline.from_pretrained(
model_id,
revision="fp16" if torch.cuda.is_available() else "fp32",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
scheduler=scheduler
).to("cuda")
pipe.enable_attention_slicing()
pipe.enable_xformers_memory_efficient_attention()
pipe_i2i = None
pipe_upscale = None
pipe_inpaint = None
attn_slicing_enabled = True
mem_eff_attn_enabled = True
modes = {
'txt2img': 'Text to Image',
'img2img': 'Image to Image',
'inpaint': 'Inpainting',
'upscale4x': 'Upscale 4x',
}
current_mode = modes['txt2img']
def error_str(error, title="Error"):
return f"""#### {title}
{error}""" if error else ""
def update_state(new_state):
global state
state = new_state
def update_state_info(old_state):
if state and state != old_state:
return gr.update(value=state)
def set_mem_optimizations(pipe):
if attn_slicing_enabled:
pipe.enable_attention_slicing()
else:
pipe.disable_attention_slicing()
if mem_eff_attn_enabled:
pipe.enable_xformers_memory_efficient_attention()
else:
pipe.disable_xformers_memory_efficient_attention()
def get_i2i_pipe(scheduler):
update_state("Loading image to image model...")
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
model_id,
revision="fp16" if torch.cuda.is_available() else "fp32",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
scheduler=scheduler
)
set_mem_optimizations(pipe)
pipe.to("cuda")
return pipe
def get_inpaint_pipe():
update_state("Loading inpainting model...")
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-inpainting",
revision="fp16" if torch.cuda.is_available() else "fp32",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
# scheduler=scheduler # TODO currently setting scheduler here messes up the end result. A bug in Diffusers🧨
).to("cuda")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_attention_slicing()
pipe.enable_xformers_memory_efficient_attention()
return pipe
def get_upscale_pipe(scheduler):
update_state("Loading upscale model...")
pipe = StableDiffusionUpscalePipeline.from_pretrained(
"stabilityai/stable-diffusion-x4-upscaler",
revision="fp16" if torch.cuda.is_available() else "fp32",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
# scheduler=scheduler
)
# pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
set_mem_optimizations(pipe)
pipe.to("cuda")
return pipe
def switch_attention_slicing(attn_slicing):
global attn_slicing_enabled
attn_slicing_enabled = attn_slicing
def switch_mem_eff_attn(mem_eff_attn):
global mem_eff_attn_enabled
mem_eff_attn_enabled = mem_eff_attn
def pipe_callback(step: int, timestep: int, latents: torch.FloatTensor):
update_state(f"{step}/{current_steps} steps")#\nTime left, sec: {timestep/100:.0f}")
def inference(inf_mode, prompt, n_images, guidance, steps, width=768, height=768, seed=0, img=None, strength=0.5, neg_prompt=""):
update_state(" ")
global current_mode
if inf_mode != current_mode:
pipe.to("cuda" if inf_mode == modes['txt2img'] else "cpu")
if pipe_i2i is not None:
pipe_i2i.to("cuda" if inf_mode == modes['img2img'] else "cpu")
if pipe_inpaint is not None:
pipe_inpaint.to("cuda" if inf_mode == modes['inpaint'] else "cpu")
if pipe_upscale is not None:
pipe_upscale.to("cuda" if inf_mode == modes['upscale4x'] else "cpu")
current_mode = inf_mode
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
prompt = prompt
try:
if inf_mode == modes['txt2img']:
return txt_to_img(prompt, n_images, neg_prompt, guidance, steps, width, height, generator), gr.update(visible=False, value=None)
elif inf_mode == modes['img2img']:
if img is None:
return None, gr.update(visible=True, value=error_str("Image is required for Image to Image mode"))
return img_to_img(prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator), gr.update(visible=False, value=None)
elif inf_mode == modes['inpaint']:
if img is None:
return None, gr.update(visible=True, value=error_str("Image is required for Inpainting mode"))
return inpaint(prompt, n_images, neg_prompt, img, guidance, steps, width, height, generator), gr.update(visible=False, value=None)
elif inf_mode == modes['upscale4x']:
if img is None:
return None, gr.update(visible=True, value=error_str("Image is required for Upscale mode"))
return upscale(prompt, n_images, neg_prompt, img, guidance, steps, generator), gr.update(visible=False, value=None)
except Exception as e:
return None, gr.update(visible=True, value=error_str(e))
def txt_to_img(prompt, n_images, neg_prompt, guidance, steps, width, height, generator):
result = pipe(
prompt,
num_images_per_prompt = n_images,
negative_prompt = neg_prompt,
num_inference_steps = int(steps),
guidance_scale = guidance,
width = width,
height = height,
generator = generator,
callback=pipe_callback).images
update_state("")
return result
def img_to_img(prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator):
global pipe_i2i
if pipe_i2i is None:
pipe_i2i = get_i2i_pipe(scheduler)
img = img['image']
ratio = min(height / img.height, width / img.width)
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
result = pipe_i2i(
prompt,
num_images_per_prompt = n_images,
negative_prompt = neg_prompt,
init_image = img,
num_inference_steps = int(steps),
strength = strength,
guidance_scale = guidance,
width = width,
height = height,
generator = generator,
callback=pipe_callback).images
update_state("")
return result
# TODO Currently supports only 512x512 images
def inpaint(prompt, n_images, neg_prompt, img, guidance, steps, width, height, generator):
global pipe_inpaint
if pipe_inpaint is None:
pipe_inpaint = get_inpaint_pipe()
inp_img = img['image']
mask = img['mask']
inp_img = square_padding(inp_img)
mask = square_padding(mask)
# # ratio = min(height / inp_img.height, width / inp_img.width)
# ratio = min(512 / inp_img.height, 512 / inp_img.width)
# inp_img = inp_img.resize((int(inp_img.width * ratio), int(inp_img.height * ratio)), Image.LANCZOS)
# mask = mask.resize((int(mask.width * ratio), int(mask.height * ratio)), Image.LANCZOS)
inp_img = inp_img.resize((512, 512))
mask = mask.resize((512, 512))
result = pipe_inpaint(
prompt,
image = inp_img,
mask_image = mask,
num_images_per_prompt = n_images,
negative_prompt = neg_prompt,
num_inference_steps = int(steps),
guidance_scale = guidance,
# width = width,
# height = height,
generator = generator,
callback=pipe_callback).images
update_state("")
return result
def square_padding(img):
width, height = img.size
if width == height:
return img
new_size = max(width, height)
new_img = Image.new('RGB', (new_size, new_size), (0, 0, 0, 255))
new_img.paste(img, ((new_size - width) // 2, (new_size - height) // 2))
return new_img
def upscale(prompt, n_images, neg_prompt, img, guidance, steps, generator):
global pipe_upscale
if pipe_upscale is None:
pipe_upscale = get_upscale_pipe(scheduler)
img = img['image']
return upscale_tiling(prompt, neg_prompt, img, guidance, steps, generator)
# result = pipe_upscale(
# prompt,
# image = img,
# num_inference_steps = int(steps),
# guidance_scale = guidance,
# negative_prompt = neg_prompt,
# num_images_per_prompt = n_images,
# generator = generator).images[0]
# return result
def upscale_tiling(prompt, neg_prompt, img, guidance, steps, generator):
width, height = img.size
# calculate the padding needed to make the image dimensions a multiple of 128
padding_x = 128 - (width % 128) if width % 128 != 0 else 0
padding_y = 128 - (height % 128) if height % 128 != 0 else 0
# create a white image of the right size to be used as padding
padding_img = Image.new('RGB', (padding_x, padding_y), color=(255, 255, 255, 0))
# paste the padding image onto the original image to add the padding
img.paste(padding_img, (width, height))
# update the image dimensions to include the padding
width += padding_x
height += padding_y
if width > 128 or height > 128:
num_tiles_x = int(width / 128)
num_tiles_y = int(height / 128)
upscaled_img = Image.new('RGB', (img.size[0] * 4, img.size[1] * 4))
for x in range(num_tiles_x):
for y in range(num_tiles_y):
update_state(f"Upscaling tile {x * num_tiles_y + y + 1}/{num_tiles_x * num_tiles_y}")
tile = img.crop((x * 128, y * 128, (x + 1) * 128, (y + 1) * 128))
upscaled_tile = pipe_upscale(
prompt="",
image=tile,
num_inference_steps=steps,
guidance_scale=guidance,
# negative_prompt = neg_prompt,
generator=generator,
).images[0]
upscaled_img.paste(upscaled_tile, (x * upscaled_tile.size[0], y * upscaled_tile.size[1]))
return [upscaled_img]
else:
return pipe_upscale(
prompt=prompt,
image=img,
num_inference_steps=steps,
guidance_scale=guidance,
negative_prompt = neg_prompt,
generator=generator,
).images
def on_mode_change(mode):
return gr.update(visible = mode in (modes['img2img'], modes['inpaint'], modes['upscale4x'])), \
gr.update(visible = mode == modes['inpaint']), \
gr.update(visible = mode == modes['upscale4x']), \
gr.update(visible = mode == modes['img2img'])
def on_steps_change(steps):
global current_steps
current_steps = steps
css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
f"""
<div class="main-div">
<div>
<h1>Stable Diffusion 2</h1>
</div><br>
<p> Model used: <a href="https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/768-v-ema.ckpt" target="_blank">768-v-ema.ckpt</a></p>
Running on <b>{"GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"}</b>
</div>
"""
)
with gr.Row():
with gr.Column(scale=55):
with gr.Group():
with gr.Row():
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder=f"Enter prompt").style(container=False)
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
gallery = gr.Gallery(label="Generated images", show_label=False).style(grid=[2], height="auto")
state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(container=False)
error_output = gr.Markdown(visible=False)
with gr.Column(scale=45):
inf_mode = gr.Radio(label="Inference Mode", choices=list(modes.values())[:4], value=modes['txt2img']) # TODO remove [:3] limit
with gr.Group(visible=False) as i2i_options:
image = gr.Image(label="Image", height=128, type="pil", tool='sketch')
inpaint_info = gr.Markdown("Inpainting resizes and pads images to 512x512", visible=False)
upscale_info = gr.Markdown("""Best for small images (128x128 or smaller).<br>
Bigger images will be sliced into 128x128 tiles which will be upscaled individually.<br>
This is done to avoid running out of GPU memory.""", visible=False)
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
with gr.Group():
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
n_images = gr.Slider(label="Number of images", value=1, minimum=1, maximum=4, step=1)
with gr.Row():
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
steps = gr.Slider(label="Steps", value=current_steps, minimum=2, maximum=100, step=1)
with gr.Row():
width = gr.Slider(label="Width", value=768, minimum=64, maximum=1024, step=8)
height = gr.Slider(label="Height", value=768, minimum=64, maximum=1024, step=8)
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
with gr.Accordion("Memory optimization"):
attn_slicing = gr.Checkbox(label="Attention slicing (a bit slower, but uses less memory)", value=attn_slicing_enabled)
mem_eff_attn = gr.Checkbox(label="Memory efficient attention (xformers)", value=mem_eff_attn_enabled)
inf_mode.change(on_mode_change, inputs=[inf_mode], outputs=[i2i_options, inpaint_info, upscale_info, strength], queue=False)
steps.change(on_steps_change, inputs=[steps], outputs=[], queue=False)
attn_slicing.change(lambda x: switch_attention_slicing(x), inputs=[attn_slicing], queue=False)
mem_eff_attn.change(lambda x: switch_mem_eff_attn(x), inputs=[mem_eff_attn], queue=False)
inputs = [inf_mode, prompt, n_images, guidance, steps, width, height, seed, image, strength, neg_prompt]
outputs = [gallery, error_output]
prompt.submit(inference, inputs=inputs, outputs=outputs)
generate.click(inference, inputs=inputs, outputs=outputs)
demo.load(update_state_info, inputs=state_info, outputs=state_info, every=0.5, show_progress=False)
demo.queue()
demo.launch(debug=True, share=True, height=768)