Spaces:
Running
Running
Commit
Β·
30b7603
1
Parent(s):
f82f487
added generate transcript fxn
Browse files- ASR_Server.py +172 -0
- requirements.txt +15 -0
- test.csv +0 -0
ASR_Server.py
CHANGED
@@ -1,4 +1,174 @@
|
|
1 |
from flask import Flask, jsonify
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
app = Flask(__name__)
|
4 |
|
@@ -25,6 +195,8 @@ def asr_models():
|
|
25 |
"Fairseq S2T",
|
26 |
"ESPnet"
|
27 |
]
|
|
|
|
|
28 |
return jsonify({"asr_models": models})
|
29 |
|
30 |
# if __name__ == "__main__":
|
|
|
1 |
from flask import Flask, jsonify
|
2 |
+
from datasets import load_dataset, Audio
|
3 |
+
import pandas as pd
|
4 |
+
import os
|
5 |
+
|
6 |
+
# Load dataset without decoding audio (required!)
|
7 |
+
dataset = load_dataset("satyamr196/asr_fairness_audio", split="train")
|
8 |
+
# dataset = dataset.with_format("python", decode_audio=False)
|
9 |
+
dataset = dataset.cast_column("audio", Audio(decode=False))
|
10 |
+
|
11 |
+
print(" ___ ")
|
12 |
+
csv_path = "test.csv"
|
13 |
+
df = pd.read_csv(csv_path)
|
14 |
+
print(f"CSV Loaded with {len(df)} rows")
|
15 |
+
|
16 |
+
# def generateTranscript(ASR_model, dataset, csv_path, output_dir="./"):
|
17 |
+
# import os
|
18 |
+
# import time
|
19 |
+
# import pandas as pd
|
20 |
+
# import librosa
|
21 |
+
# import tqdm
|
22 |
+
# from transformers import pipeline
|
23 |
+
|
24 |
+
# os.makedirs(output_dir, exist_ok=True)
|
25 |
+
# # output_csv_path = os.path.join(output_dir, f"test_with_{ASR_model.replace('/', '_')}.csv")
|
26 |
+
# output_csv_path = os.path.join(output_dir, f"test_with_{ASR_model}.csv")
|
27 |
+
|
28 |
+
# if os.path.exists(output_csv_path):
|
29 |
+
# print(f"Transcript already exists for model {ASR_model}. Skipping transcription.")
|
30 |
+
# return
|
31 |
+
|
32 |
+
# # Load metadata CSV
|
33 |
+
# df = pd.read_csv(csv_path)
|
34 |
+
# print(f"CSV Loaded with {len(df)} rows")
|
35 |
+
|
36 |
+
# # Prepare
|
37 |
+
# df[df.columns[0]] = df[df.columns[0]].str.strip().str.lower()
|
38 |
+
# filename_column = df.columns[0]
|
39 |
+
# transcripts = []
|
40 |
+
# rtfx_score = []
|
41 |
+
|
42 |
+
# # Load ASR model
|
43 |
+
# pipe = pipeline("automatic-speech-recognition", model=ASR_model)
|
44 |
+
|
45 |
+
# # Create a map of dataset samples by file name (assumes filename is in dataset)
|
46 |
+
# dataset_map = {
|
47 |
+
# sample["audio"]["path"].split("/")[-1].lower(): sample for sample in dataset
|
48 |
+
# }
|
49 |
+
|
50 |
+
# for idx, row in tqdm.tqdm(df.iterrows(), total=len(df)):
|
51 |
+
# filename = row[filename_column].strip().lower() + ".wav"
|
52 |
+
# if filename in dataset_map:
|
53 |
+
# sample = dataset_map[filename]
|
54 |
+
# try:
|
55 |
+
# audio_array = sample["audio"]["array"]
|
56 |
+
# sample_rate = sample["audio"]["sampling_rate"]
|
57 |
+
|
58 |
+
# start_time = time.time()
|
59 |
+
# result = pipe({"array": audio_array, "sampling_rate": sample_rate})
|
60 |
+
# end_time = time.time()
|
61 |
+
|
62 |
+
# transcript = result["text"]
|
63 |
+
# duration = librosa.get_duration(y=audio_array, sr=sample_rate)
|
64 |
+
# rtfx = (end_time - start_time) / duration if duration > 0 else 0
|
65 |
+
|
66 |
+
# transcripts.append(transcript)
|
67 |
+
# rtfx_score.append(rtfx)
|
68 |
+
|
69 |
+
# print(f"β
{filename}: RTFX = {rtfx:.2f}")
|
70 |
+
|
71 |
+
# except Exception as e:
|
72 |
+
# print(f"β Error with {filename}: {e}")
|
73 |
+
# transcripts.append("")
|
74 |
+
# rtfx_score.append(0)
|
75 |
+
# else:
|
76 |
+
# print(f"β οΈ File not in dataset: {filename}")
|
77 |
+
# transcripts.append("")
|
78 |
+
# rtfx_score.append(0)
|
79 |
+
|
80 |
+
# # Append to original DataFrame
|
81 |
+
# df['transcript'] = transcripts
|
82 |
+
# df['rtfx'] = rtfx_score
|
83 |
+
|
84 |
+
# df.to_csv(output_csv_path, index=False)
|
85 |
+
# print(f"β
Transcripts saved to {output_csv_path}")
|
86 |
+
|
87 |
+
def generateTranscript(ASR_model, dataset, csv_path, output_dir="./"):
|
88 |
+
import os
|
89 |
+
import time
|
90 |
+
import tqdm
|
91 |
+
import pandas as pd
|
92 |
+
import soundfile as sf
|
93 |
+
from transformers import pipeline
|
94 |
+
|
95 |
+
output_csv_path = os.path.join("./", f"test_with_{ASR_model}.csv")
|
96 |
+
# Check if transcript already exists
|
97 |
+
if os.path.exists(output_csv_path):
|
98 |
+
print(f"Transcript already exists for model {ASR_model}. Skipping transcription.")
|
99 |
+
return
|
100 |
+
|
101 |
+
# Load CSV
|
102 |
+
df = pd.read_csv(csv_path)
|
103 |
+
print(f"CSV Loaded with {len(df)} rows")
|
104 |
+
|
105 |
+
# Initialize ASR pipeline
|
106 |
+
pipe = pipeline("automatic-speech-recognition", model=ASR_model, device=-1)
|
107 |
+
print("Device set to use CPU")
|
108 |
+
|
109 |
+
# Column with filenames in the CSV
|
110 |
+
filename_column = df.columns[0]
|
111 |
+
df[filename_column] = df[filename_column].str.strip().str.lower()
|
112 |
+
|
113 |
+
# Build map from filename -> dataset sample (without decoding audio)
|
114 |
+
print("Creating dataset map from filenames...")
|
115 |
+
# dataset = dataset.with_format("python", decode_audio=False)
|
116 |
+
dataset_map = {
|
117 |
+
os.path.basename(sample["audio"]["path"]).lower(): sample
|
118 |
+
for sample in dataset
|
119 |
+
}
|
120 |
+
|
121 |
+
transcripts = []
|
122 |
+
rtfx_score = []
|
123 |
+
|
124 |
+
for idx, row in tqdm.tqdm(df.iterrows(), total=len(df)):
|
125 |
+
filename = row[filename_column] + ".wav"
|
126 |
+
|
127 |
+
if filename in dataset_map:
|
128 |
+
sample = dataset_map[filename]
|
129 |
+
try:
|
130 |
+
# Decode audio only when needed
|
131 |
+
file_path = sample["audio"]["path"]
|
132 |
+
audio_array, sample_rate = sf.read(file_path)
|
133 |
+
|
134 |
+
start_time = time.time()
|
135 |
+
result = pipe({"array": audio_array, "sampling_rate": sample_rate})
|
136 |
+
end_time = time.time()
|
137 |
+
|
138 |
+
transcript = result["text"]
|
139 |
+
duration = len(audio_array) / sample_rate
|
140 |
+
rtfx = (end_time - start_time) / duration if duration > 0 else 0
|
141 |
+
|
142 |
+
transcripts.append(transcript)
|
143 |
+
rtfx_score.append(rtfx)
|
144 |
+
|
145 |
+
print(f"β
{filename}: RTFX = {rtfx:.2f}")
|
146 |
+
|
147 |
+
except Exception as e:
|
148 |
+
print(f"β Error with {filename}: {e}")
|
149 |
+
transcripts.append("")
|
150 |
+
rtfx_score.append(0)
|
151 |
+
else:
|
152 |
+
print(f"β File not found in dataset: {filename}")
|
153 |
+
transcripts.append("")
|
154 |
+
rtfx_score.append(0)
|
155 |
+
|
156 |
+
# Save results
|
157 |
+
df["transcript"] = transcripts
|
158 |
+
df["rtfx"] = rtfx_score
|
159 |
+
|
160 |
+
os.makedirs(output_dir, exist_ok=True)
|
161 |
+
# Create the directory if it doesn't exist
|
162 |
+
output_dir = os.path.dirname(os.path.join(output_dir, f"test_with_{ASR_model}.csv")) # Get the directory path
|
163 |
+
if not os.path.exists(output_dir): # Check if directory exists
|
164 |
+
os.makedirs(output_dir) # Create directory if it doesn't exist
|
165 |
+
print(f"Created directory: {output_dir}")
|
166 |
+
|
167 |
+
df.to_csv(output_csv_path, index=False)
|
168 |
+
|
169 |
+
print(f"\nπ Transcripts saved to: {output_csv_path}")
|
170 |
+
|
171 |
+
|
172 |
|
173 |
app = Flask(__name__)
|
174 |
|
|
|
195 |
"Fairseq S2T",
|
196 |
"ESPnet"
|
197 |
]
|
198 |
+
generateTranscript("openai/whisper-base", dataset, csv_path, output_dir="./") ;
|
199 |
+
# print("Transcript generation completed.")
|
200 |
return jsonify({"asr_models": models})
|
201 |
|
202 |
# if __name__ == "__main__":
|
requirements.txt
CHANGED
@@ -1,2 +1,17 @@
|
|
1 |
flask
|
2 |
gunicorn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
flask
|
2 |
gunicorn
|
3 |
+
soundfile>=0.10.3
|
4 |
+
librosa
|
5 |
+
transformers
|
6 |
+
datasets
|
7 |
+
torch
|
8 |
+
pydub
|
9 |
+
jiwer
|
10 |
+
statsmodels
|
11 |
+
matplotlib
|
12 |
+
seaborn
|
13 |
+
flask
|
14 |
+
pymongo
|
15 |
+
flask-cors
|
16 |
+
pandas
|
17 |
+
tqdm
|
test.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|