Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 4,783 Bytes
5129aaa 6d787c4 196b164 f453698 c670c44 6d787c4 c670c44 6d787c4 bcd3e1f 6d787c4 5129aaa 196b164 6d787c4 5129aaa 6d787c4 5129aaa 6d787c4 5129aaa 6d787c4 5129aaa 6d787c4 5129aaa 0212ece 6d787c4 5129aaa 0212ece 6d787c4 5129aaa db4eaac 6d787c4 2ef57a2 6d787c4 5129aaa 3a8d69b 5129aaa 3a8d69b 5129aaa 6d787c4 0212ece 6d787c4 5129aaa f453698 2ef57a2 5129aaa 2ef57a2 5129aaa a38adb6 2ef57a2 a38adb6 2ef57a2 5129aaa f453698 2ef57a2 6d787c4 711dd45 6d787c4 0212ece 6d787c4 2ef57a2 5129aaa 2ef57a2 196b164 2ef57a2 f453698 2ef57a2 196b164 2ef57a2 3a8d69b 711dd45 2ef57a2 196b164 5129aaa 2ef57a2 26e4985 5129aaa 2ef57a2 5129aaa 2ef57a2 4d5b6f6 2ef57a2 711dd45 2ef57a2 5129aaa 2ef57a2 5129aaa 2ef57a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
from datasets import load_dataset
from functools import partial
from pandas import DataFrame
import earthview as ev
import utils
import gradio as gr
import tqdm
import os
DEBUG = False # False, "random", "samples"
if DEBUG == "random":
import numpy as np
def open_dataset(dataset, subset, split, batch_size, shard, only_rgb, state):
nshards = ev.get_nshards(subset)
if shard == -1:
shards = None
else:
shards = [shard]
if DEBUG == "random":
ds = range(batch_size)
elif DEBUG == "samples":
ds = ev.load_parquet(subset, batch_size=batch_size)
elif not DEBUG:
ds = ev.load_dataset(subset, dataset=dataset, split=split, shards=shards, cache_dir="dataset")
dsi = iter(ds)
state["subset"] = subset
state["dsi"] = dsi
return (
gr.update(label=f"Shard (max {nshards})", value=shard, maximum=nshards),
*get_images(batch_size, only_rgb, state),
state
)
def get_images(batch_size, only_rgb, state):
try:
subset = state["subset"]
except KeyError:
raise gr.Error("You need to load a Dataset first")
images = []
metadatas = []
for i in tqdm.trange(batch_size, desc=f"Getting images"):
if DEBUG == "random":
images.append(np.random.randint(0,255,(384,384,3)))
if not only_rgb:
images.append(np.random.randint(0,255,(100,100,3)))
metadatas.append({"bounds":[[1,1,4,4]], })
else:
try:
item = next(state["dsi"])
except StopIteration:
break
item = ev.item_to_images(subset, item)
metadata = item["metadata"]
if subset == "satellogic":
images.extend(item["rgb"])
if not only_rgb:
images.extend(item["1m"])
elif subset == "sentinel_1":
images.extend(item["10m"])
elif subset == "sentinel_2":
images.extend(item["rgb"])
if not only_rgb:
images.extend(item["10m"])
images.extend(item["20m"])
images.extend(item["scl"])
elif subset == "neon":
images.extend(item["rgb"])
if not only_rgb:
images.extend(item["chm"])
images.extend(item["1m"])
metadata["map"] = f'<a href="{utils.get_google_map_link(item, subset)}" target="about:_blank">🧭</a>'
metadatas.append(metadata)
return images, DataFrame(metadatas)
def update_shape(columns):
return gr.update(columns=columns)
def new_state():
return gr.State({})
if __name__ == "__main__":
with gr.Blocks(title="EarthView Viewer", fill_height = True) as demo:
state = new_state()
gr.Markdown(f"# Viewer for [{ev.DATASET}](https://huggingface.co/datasets/satellogic/EarthView) Dataset")
batch_size = gr.Number(10, label = "Batch Size", render=False)
shard = gr.Slider(label="Shard", minimum=0, maximum=10000, step=1, render=False)
table = gr.DataFrame(render = False, datatype="html")
# headers=["Index","TimeStamp","Bounds","CRS"],
gallery = gr.Gallery(
label=ev.DATASET,
interactive=False,
object_fit="scale-down",
columns=5, render=False)
with gr.Row():
dataset = gr.Textbox(label="Dataset", value=ev.DATASET, interactive=False)
subset = gr.Dropdown(choices=ev.get_subsets(), label="Subset", value="satellogic", )
split = gr.Textbox(label="Split", value="train")
initial_shard = gr.Number(label = "Initial shard", value=10, info="-1 for whole dataset")
only_rgb = gr.Checkbox(label="Only RGB", value=True)
gr.Button("Load (minutes)").click(
open_dataset,
inputs=[dataset, subset, split, batch_size, initial_shard, only_rgb, state],
outputs=[shard, gallery, table, state])
gallery.render()
with gr.Row():
batch_size.render()
columns = gr.Number(5, label="Columns")
columns.change(update_shape, [columns], [gallery])
with gr.Row():
shard.render()
shard.release(
open_dataset,
inputs=[dataset, subset, split, batch_size, shard, only_rgb, state],
outputs=[shard, gallery, table, state])
btn = gr.Button("Next Batch (same shard)", scale=0)
btn.click(get_images, [batch_size, only_rgb, state], [gallery, table])
btn.click()
table.render()
demo.launch(show_api=False)
|