|
import os |
|
import gradio as gr |
|
from transformers import pipeline |
|
import spacy |
|
import subprocess |
|
import nltk |
|
from nltk.corpus import wordnet |
|
|
|
|
|
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") |
|
|
|
|
|
def predict_en(text): |
|
res = pipeline_en(text)[0] |
|
return res['label'], res['score'] |
|
|
|
|
|
nltk.download('wordnet') |
|
nltk.download('omw-1.4') |
|
|
|
|
|
try: |
|
nlp = spacy.load("en_core_web_sm") |
|
except OSError: |
|
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) |
|
nlp = spacy.load("en_core_web_sm") |
|
|
|
|
|
|
|
|
|
def check_article_error(text): |
|
tokens = nltk.pos_tag(nltk.word_tokenize(text)) |
|
corrected_tokens = [] |
|
|
|
for i, token in enumerate(tokens): |
|
word, pos = token |
|
if word.lower() == 'a' and i < len(tokens) - 1 and tokens[i + 1][1] == 'NN': |
|
corrected_tokens.append('an' if tokens[i + 1][0][0] in 'aeiou' else 'a') |
|
else: |
|
corrected_tokens.append(word) |
|
|
|
return ' '.join(corrected_tokens) |
|
|
|
|
|
def check_tense_error(text): |
|
tokens = nltk.pos_tag(nltk.word_tokenize(text)) |
|
corrected_tokens = [] |
|
|
|
for word, pos in tokens: |
|
if word == "go" and pos == "VB": |
|
corrected_tokens.append("gone") |
|
elif word == "know" and pos == "VB": |
|
corrected_tokens.append("known") |
|
else: |
|
corrected_tokens.append(word) |
|
|
|
return ' '.join(corrected_tokens) |
|
|
|
|
|
def check_pluralization_error(text): |
|
tokens = nltk.pos_tag(nltk.word_tokenize(text)) |
|
corrected_tokens = [] |
|
|
|
for word, pos in tokens: |
|
if word == "chocolate" and pos == "NN": |
|
corrected_tokens.append("chocolates") |
|
elif word == "kids" and pos == "NNS": |
|
corrected_tokens.append("kid") |
|
else: |
|
corrected_tokens.append(word) |
|
|
|
return ' '.join(corrected_tokens) |
|
|
|
|
|
def correct_grammar_tense_plural(text): |
|
text = check_article_error(text) |
|
text = check_tense_error(text) |
|
text = check_pluralization_error(text) |
|
return text |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Tab("AI Detection"): |
|
t1 = gr.Textbox(lines=5, label='Text') |
|
button1 = gr.Button("🤖 Predict!") |
|
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃') |
|
score1 = gr.Textbox(lines=1, label='Prob') |
|
|
|
|
|
button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en') |
|
|
|
with gr.Tab("Humanifier"): |
|
text_input = gr.Textbox(lines=5, label="Input Text") |
|
paraphrase_button = gr.Button("Paraphrase & Correct") |
|
output_text = gr.Textbox(label="Paraphrased Text") |
|
|
|
|
|
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text) |
|
|
|
with gr.Tab("Grammar Correction"): |
|
grammar_input = gr.Textbox(lines=5, label="Input Text") |
|
grammar_button = gr.Button("Correct Grammar") |
|
grammar_output = gr.Textbox(label="Corrected Text") |
|
|
|
|
|
grammar_button.click(correct_grammar_tense_plural, inputs=grammar_input, outputs=grammar_output) |
|
|
|
|
|
demo.launch() |
|
|