Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +38 -0
- requirements.txt +1 -0
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from keras.models import load_model
|
3 |
+
from PIL import Image, ImageOps
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
model = load_model("keras_model.h5", compile=False)
|
8 |
+
|
9 |
+
|
10 |
+
class_names = open("labels.txt", "r").readlines()
|
11 |
+
|
12 |
+
|
13 |
+
def predict(image):
|
14 |
+
|
15 |
+
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
|
16 |
+
# Preprocess
|
17 |
+
image = ImageOps.fit(image, (224, 224), Image.LANCZOS)
|
18 |
+
image_array = np.asarray(image)
|
19 |
+
normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1
|
20 |
+
data[0] = normalized_image_array
|
21 |
+
# Make prediction
|
22 |
+
prediction = model.predict(data)
|
23 |
+
index = np.argmax(prediction)
|
24 |
+
class_name = class_names[index].strip()
|
25 |
+
confidence_score = prediction[0][index]
|
26 |
+
return class_name, confidence_score
|
27 |
+
|
28 |
+
|
29 |
+
st.title("Image Classification")
|
30 |
+
|
31 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
32 |
+
|
33 |
+
if uploaded_file is not None:
|
34 |
+
image = Image.open(uploaded_file).convert("RGB")
|
35 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
36 |
+
class_name, confidence_score = predict(image)
|
37 |
+
st.write("Class:", class_name)
|
38 |
+
st.write("Confidence Score:", confidence_score)
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
tensorflow
|